Advertisement

Marine Geophysical Researches

, Volume 22, Issue 5–6, pp 417–443 | Cite as

Glacial morphology and post-glacial contourites in northern Prince Gustav Channel (NW Weddell Sea, Antarctica)

  • Angelo Camerlenghi
  • Eugene Domack
  • Michele Rebesco
  • Robert Gilbert
  • Scott Ishman
  • Amy Leventer
  • Stefanie Brachfeld
  • Allison Drake
Article

Abstract

We present the results of a marine geophysical investigation of the northern Prince Gustav Channel. By comparative analysis of multibeam bathymetric data, single channel seismic reflection profiles, underway chirp sonar data, ADCP current data and sediment coring, we define the main morphological elements of the area. In particular we define the glacial morphogenesis in relation to the excavation of inner shelf basins and troughs along structural discontinuities and lithologic boundaries. We identify streamlined surfaces that testify to the grounding of ice and past ice flow directions. These glacial forms are found only on glacial tills preserved in the deepest part of the basins, while net erosion to bedrock has occurred elsewhere. Since the Last Glacial Maximum (LGM), the relict glacial morphology has been draped by hemipelagic and diatomaceous mud, and bottom currents have played a major role in focusing sedimentation within small depocentres, that we define as contouritic drifts. Based on shallow sediment architecture and supported by direct measurements, we propose that the direction of bottom water flow is from the outer shelf into the Prince Gustav channel as a result of a combination of tidal currents and ice shelf-related thermohaline circulation.

Antarctica contourite drifts glacial morphology Prince Gustav Channel Weddell Sea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. B., in press, Geomorphic and sedimentological records of grounded ice sheets and paleo-ice streams, in Dowdeswell, J., and O'Cofaigh, C. (eds.), Glacier-influenced sedimentation on high-latitude continental margins, Geol. Soc. Spec. Pub. London. Google Scholar
  2. Anderson, J. B., Smith Wellner, J., Lowe, A. L., Mosola, A. B., and Shipp, S. S., 2001, Footprint of the expanded West Antarctic ice sheet: Ice stream history and behaviour, GSA Today 11 (10), 4-9.Google Scholar
  3. Anderson, J. B., 1999, Antarctic Marine Geology. Cambridge University Press, Cambridge, UK, 289 pp.Google Scholar
  4. Anderson, J. B., Shipp, S. S., and Siringan, F. P., 1992, Preliminary seismic stratigraphy of the Northwestern Weddell Sea continental shelf, in Yoshida, Y., Kaminuma, K., and Shiraishi, K. (eds.), Recent Progress in Antarctic Earth Science, Terra Sci. Pub. Tokyo, 606-612.Google Scholar
  5. Alley, R. B., Blankenship, D. D., Bentley, C. R., and Rooney, S. T., 1987, Till beneath ice stream B. 3. Till deformation: evidence and implications, J. Geophys. Res. 92, 8921-8929.Google Scholar
  6. Barber, M., and Crane, D., 1995, Current flow in the north-west Weddell Sea, Ant. Sc. 7, 39-50.Google Scholar
  7. BAS, 1982, British Antarctic Territory geological map, Sheet 5. Northern Palmer Land, 1:500,000, BAS 500G Series, British Antarctic Survey, Cambridge.Google Scholar
  8. BAS, 1985, Tectonic Map of the Scotia arc. 1:3,000,000, BAS (Misc) 3, British Antarctic Survey, Cambridge.Google Scholar
  9. Benn, D. I. and Evans, D. J. A., 1996, The interpretation and classification of subglacially deformed materials. Quat. Sc. Rev. 15, 23-52.Google Scholar
  10. Bennett, M. R., and Glasser, N. F., 1996, Glacial Geology: Ice Sheets and Landforms, Wiley, Chichester, UK, 364 pp.Google Scholar
  11. Bentley, M. J., and Anderson, J. B., 1998, Glacial and marine geological evidence for the ice sheet configuration in the Weddell Sea–Antarctic Peninsula region during the Last Glacial Maximum, Ant. Sc. 10, 309-325.Google Scholar
  12. Brodzikowsky, K. and van Loon A. J., 1991, Glacigenic Sediments. Developments in Sedimentology Series, Vol. 6, Elsevier, Amsterdam, 674 pp.Google Scholar
  13. Canals, M., Urgeles, R., and Calafat, A. M., 2000, Deep sea-floor evidence of past ice streams off the Antarctic Peninsula, Geology, 28, 31-34.Google Scholar
  14. Carter, L. and McCave, I. N. 1994, Development of sediment drifts approaching an active plate margin under the SW Pacific Deep Western Boundary Undercurrent. Paleoceanography 9, 1061-1085.Google Scholar
  15. Cooper, A. P. R., 1997, Historical observations of Prince Gustav Ice Shelf, Polar Record 33, 285-294.Google Scholar
  16. Del Valle, R. A. and Miller, H., 2001, Transpressional deformation along the margin of Larsen Basin: New data from Pedersen Nunatak, Antarctic Peninsula, Ant. Sc. 13, 158-166.Google Scholar
  17. Del Valle, R. A., Elliot, D. H., and MacDonald, D. I. M., 1992, Sedimentary basins of the east flank of the Antarctic Peninsula: proposed nomenclature, Ant. Sc. 4, 477-478.Google Scholar
  18. Domack, E., Leventer, A., Gilbert, R., Brachfeld, S., Ishman, S., Camerlenghi, A., Gavahan, K., Carlson, D., and Barkoukis, A., 2001a, Cruise reveals history of Holocene Larsen ice shelf, EOS Transaction AGU 82, 16-17.Google Scholar
  19. Domack, E., Leventer, A., Dunbar, R., Taylor, F., Brachfeld, S., Sjunneskog, C., and ODP Leg 178 Scientific Party, 2001b, Chronology of the Palmer Deep site, Antarctic Peninsula: A Holocene paleoenvironmental reference for the circum-Antarctic, Holocene 11, 1-9.Google Scholar
  20. Domack E.W. and Harris, P. T., 1998, A new depositional model for ice shelves, based upon sediment cores from the Ross Sea and the Mac Robertson shelf, Antarctica, Ann. Glaciol. 27, 281-284.Google Scholar
  21. Ehlers, J., 1996, Quaternary and Glacial Geology, J.Wiley & Sons, Chicester, UK, 578 pp.Google Scholar
  22. Fahrbach, E., Rohardt, G., Scheele, N., Schroeder, M., Strass, V., and Wisotzki, A., 1995, Formation and discharge of deep and bottom water in the Northwestern Weddell Sea, J. Mar. Res. 53, 515-538.Google Scholar
  23. Faugè res, J.-C., Stow, D. A. V., Imbert P. and Viana A., 1999, Seismic features diagnostic of contourite drifts, Mar. Geol. 162, 1-38.Google Scholar
  24. Faugè res, J. C., Imbert, P., Mè zerais, M. L., Cremer, M., 1998, Seismic patterns of a muddy contourite fan (Vema Channel, South Brazilian Basin) and a sandy deep-sea fan (Cap Ferret system Bay of Biscaye): A comparison. Sed. Geol. 115 (1–4), 81-110.Google Scholar
  25. Foldvik, A., Kvinge, T., and Tø rresen, T., 1985, Circulation and water masses on the southern Weddell Sea, in Jacobs S. S. (ed.), Oceanology of the Antarctic Continental Shelf, AGU Antarctic Res. Ser. 43, 21-34.Google Scholar
  26. Gill, A. E., 1973, Circulation and bottom water production in the Weddell Sea, Deep-Sea Res 86, 4193-4197.Google Scholar
  27. Gordon, A. L., and Molinelli E., 1982, Southern Ocean Atlas: Thermohaline and Chemical Distribution, Columbia University Press, New York, 11 pp, 223 plates.Google Scholar
  28. Gordon, A. L., Huber, B. A., Hellmer, H. H., and Field, A., 1993, Deep and bottom water of the Weddell Sea's western rim, Science 262, 95-97.Google Scholar
  29. Hatway, B., 2000, Continental rift to back-ark basin: Jurassic-Cretaceous stratigraphical and structural evolution of the Larsen Basin, Antarctic Peninsula J. Geol. Soc. London 157, 417-432.Google Scholar
  30. Harris, P. T., Brancolini, G., Armand, L., Busetti, M., Beaman, R.J., Giorgetti, G., Presti, M. and Trincardi, F., 2001, Continental shelf drift deposit indicates non-steady state Antarctic bottom water production in the Holocene, Mar. Geol. 179, 1-8.Google Scholar
  31. Harris, P. T., Domack, E. Manley, P. L., Gilbert, R., and Leventer, A. 1999, Andvord drift: A new type of inner shelf, glacial marine deposystem from the Antarctic Peninsula, Geology 27, 683-686.Google Scholar
  32. Hellmer, H. H. and Olbers, D. J., 1989, On the thermohaline circulation beneath the Fichne-Ronne ice shelves, Ant. Sc. 3, 433-442.Google Scholar
  33. Hjort, C., Ingó lfsson, Ó., Möller, P., and Lirio, J. M., 1997, Holocene glacial history and sea-level changes on James Ross Island, Antarctic Peninsula, J. Quat. Sc. 12, 259-273.Google Scholar
  34. Hollister, C. D. and Elder, R. B., 1969, Contour currents in the Weddell Sea, Deep-Sea Res. 16, 99-101.Google Scholar
  35. Inverson, N.R., 1995, Processes of Erosion, in Menzies, J. (ed.), Modern Glacial Environments: Processes, Dynamics, and Sediments. Glacial Environments, Vol. 1, Butterworth Heinemann, Oxford, UK, pp. 241-260.Google Scholar
  36. IOC, IHO, and BODC, 1997, GEBCO097: The 1997 Edition of the GEBCO digital Atlas, published on behalf of the Intergovernmental Oceanographic Commission (of UNESCO) and the International Hydrographic Organisation as part of the General Bathymetric Chart of the Oceans (GEBCO); British Oceanographic Data Centre, Birkenhead. (including CD-ROM).Google Scholar
  37. Kidd, R. B., and Hill, P. R., 1986, Sedimentation on mid-ocean sediment drifts, in Summerhayes, C. P. and Shackleton, N. J. (eds.), North Atlantic Paleoceanography, Geol. Soc. Spec. Pub. London 21, 87-102.Google Scholar
  38. Longva, O. and Thorsen, T. (eds.), 1997, Skagerrak in the past and at the present–An integrated study of geology, chemistry, hydrography, and microfossil ecology, Norges Geologiske Undersø kelse, Special Pub. 8, 100 pp.Google Scholar
  39. Larter, R. D., Rebesco, M., Vanneste, L. E., Gambô a, L. A. P., and Barker, P. F., 1997, Cenozoic tectonic, sedimentary and glacial history of the continental shelf west of Graham Land, Antarctic Peninsula, in Cooper, A. K. and Barker, P. F. (eds.), Geology and Seismic Stratigraphy of the Antarctic Margin, Part 2. AGU Antarctic Res. Ser. 71, 1-27.Google Scholar
  40. MacGregor, K. R., Anderson, R. S, Anderson, S. P. and Waddington E. D., 2000, Numerical simulation of glacial-valley longitudinal profile evolution, Geology 28, 1031-1034.Google Scholar
  41. McCave, IN and Carter, L., 1997, Recent sedimentation beneath the Deep Western Boundary Current off northern New Zealand, Deep-Sea Res. 44, 1203-1237.Google Scholar
  42. Mè zerais, M.L., 1991, Accumulations sedimentaires profondes turbiditique (deep-sea fan du Cap Ferret) et contouritique (bassin sud-bresilien): Geometrie, facies, edification, Theè se, Univ. Bordeaux I, 606, 301 pp. 443Google Scholar
  43. Mè zerais, M. L., Faugè res, J. C., Figueiredo, A., Massé, L., 1993, Contour current accumulation off Vema Channel mouth, southern Brazil basin. Sed. Geol. 82, 173-188.Google Scholar
  44. Muench, R. D. and Gordon, A. L., 1995, Circulation and transport of water along the western Weddell Sea margin, J. Geophys. Res. 100, 18503-18515.Google Scholar
  45. Nelson, C. H., Baraza, J., Maldonado, A., 1993, Mediterranean undercurrent 'contourites' in the eastern Gulf of Cadiz, Sed. Geol. 82, 103-132.Google Scholar
  46. O'Brien, P. E. DeSantis, L., Harris, P. T., Domack, E., and Quilty, P. G., 1999, Ice shelf grounding zone features of western Prydz Bay, Antarctica. Sedimentary processes from seismic and side scan images, Ant. Sc. 11, 78-91.Google Scholar
  47. Orsi, A. H., Nowlin, W. D., Jr. and Whitworth, T. III, 1993, On the circulation and stratification of theWeddell Gyre, Deep-Sea Res. 40, 169-203.Google Scholar
  48. Pudsey, C. J., Evans, J., Domack, E. W., Morris, P., and Del Valle, R., 2001, Bathymetry and acoustic facies beneath the former Larsen-A and Prince Gustav ice shelves, NW Weddell Sea, Ant. Sc., 13, 312-322.Google Scholar
  49. Rebesco, M., Camerlenghi, A., DeSantis, L., Domack, E., and Kirby, M., 1998, Seismic stratigraphy of Palmer Deep: A fault-bounded late Quaternary sediment trap on the inner continental shelf, Antarctic Peninsula Pacific margin, Mar. Geol. 151, 89-110.Google Scholar
  50. Reed, D. L., Meyer, A. W., Silver, E. A., Prasetyo, H., 1987, Contourite sedimentation in an intraoceanic forearc system: Eastern Sunda Arc, Indonesia, Mar. Geol. 76, 223-242.Google Scholar
  51. Roberts, D. G., Hogg, G. N., Bishop, D. G., Flewellen, C. G., 1974, Sediment distribution around moated seamounts in the Rockall Trough, Deep-Sea Res. 21, 175-184.Google Scholar
  52. Robertson, R. A., Padman, L., and Egbert, G. D., 1998, Tides in the Weddell Sea, in Jacobs, S. S. and Weiss R. F. (eds.), Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, AGU Antarctic Res. Ser. 75, 341-369.Google Scholar
  53. Rott., H., Skvarca, P., and Nagler, T., 1996, Rapid collapse of Northern Larsen Ice Shelf, Antarctica, Science 271, 788-792.Google Scholar
  54. Shipp, S. and Anderson, J. B., 1997, Drumlin field on the Ross Sea continental shelf, Antarctica, in Davies, T. A., Bell, T., Cooper, A. K., Josenhans, H., Polyak L., Solheim, A., Stoker, A. M. S., and Stravers, J. A. (eds.), Glaciated Continental Margins. An Atlas of Acoustic Images. Chapman & Hall, London, pp. 52-53.Google Scholar
  55. Shoemaker, E. M., 1991, On the formation of large subglacial lakes, Can J. Earth Sc. 28 1975-1981.Google Scholar
  56. Sloan, B. J., Lawrer, L. A. and Anderson, J. B., 1995, Seismic stratigraphy of the Larsen Basin, Eastern Antarctic Peninsula, in Cooper, A. K., Barker, P. F., and Brancolini, G. (eds.), Geology and Seismic Stratigraphy of the Antarctic Margin, AGU Antarctic Res. Ser. 68, 59-74.Google Scholar
  57. Smellie, J. L., 1990, Graham Land and South Shetland Islands, in LeMasurier, W. E. and Thomson, J. W. (eds.), Volcanoes of the Antarctic Plate and Southern Oceans, AGU Antarctic Res. Ser. 48, 303-359.Google Scholar
  58. Solheim, A., Russwurm, L., Elverø i, A., and Nylan-Berg, M., 1990, Glacial geomorphic features in the northern Barents Sea: Direct evidence for grounded ice and implications for the pattern of deglaciation and late glacial sedimentation, in Dowdeswell, J. A. and Scourse, J. D. (eds.), Glacimarine environments processes and sediments, Geol. Soc. Spec. Publ. London 53, 253-268.Google Scholar
  59. Stow, D. A. V., Reading, H. G., Collinson, J., 1996, Deep Seas, in Reading, H. G. (ed.), Sedimentary Environments, Blackwell Sc. Pub. Oxford, 395-453.Google Scholar
  60. Sugden, D. E., 1982, Arctic and Antarctic. A Modern Geographical Synthesis. Blackwell, Oxford, 472 pp.Google Scholar
  61. Wessel, P. and Smith, W. H. F., 1995, New version of the Generic Mapping Tools released, EOS Trans. AGU 76, 329.Google Scholar
  62. Yaremchuk, M., Nechaev, D., Schroter, J., and Fahrbach, E., 1998, A dynamically consistent analysis of circulation and transports in the Southwestern Weddell Sea, Ann. Geophys. 16, 1024-1038.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Angelo Camerlenghi
    • 1
  • Eugene Domack
    • 2
  • Michele Rebesco
    • 1
  • Robert Gilbert
    • 3
  • Scott Ishman
    • 4
  • Amy Leventer
    • 5
  • Stefanie Brachfeld
    • 6
  • Allison Drake
    • 2
  1. 1.Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGSTriesteItaly
  2. 2.Geology DepartmentHamilton CollegeClintonUSA
  3. 3.Department of GeographyQueen's UniversityKingstonCanada
  4. 4.Department of GeologySouthern Illinois UniversityCarbondaleUSA
  5. 5.Department of GeologyColgate UniversityHamiltonUSA
  6. 6.Byrd Polar Research CenterOhio State UniversityColumbusUSA

Personalised recommendations