, Volume 126, Issue 2, pp 235–250 | Cite as

Genetic analysis of resistance to barley scald (Rhynchosporium secalis) in the Ethiopian line `Abyssinian' (CI668)

  • S. Grønnerød
  • A.G. Marøy
  • J. MacKey
  • A. Tekauz
  • G.A. Penner
  • A. Bjørnstad


A doubled haploid barley (Hordeum vulgare L.) population from a cross between the cultivar `Ingrid' and the Ethiopian landrace `Abyssinian' was mapped by AFLP, RFLP, SSR and STS markers and tested for resistance to isolates`4004', `2', `16-6', `17', `22' and `WRS 1872' of Rhynchosporium secalis (Oudem.) J.J. Davis, the causal agent of leaf scald. Resistance tests were conducted on parents, DH-lines, a near-isogenic line of `Abyssinian' (NIL) into `Ingrid', and an F2 population descended from the same F1 plants as the DHs. The DH population segregated for at least two major R. secalis resistance QTL. All isolates tested identified a major QTL on chromosome 3 (3H) associated with R. secalis resistance, in a 4 cM support interval between the co-segregating markers Bmac0209/Falc666 and MWG680. The QTL was linked with the markers Falc666 (2.3 cM), YLM/ylp (0.3 cM), MWG680 (1.7 cM), cttaca2 (2.5 cM) and agtc17 (9.8 cM). The second QTL was located on chromosome 1 (7H).However, this QTL was only detected by one isolate and was located in an interval of 16 cM in the distal part of the chromosome. At this QTL the allele for improved scald resistance originated from the parent `Ingrid'. There were a number of minor QTL on chromosomes 2 (2H), 4 (4H) and 6 (6H) that were not repeatable either across replications or analysis methods. The importance of checking QTL-models by cross-validation is stressed.

Hordeum vulgare L. mapping NIL QTL Rhynchosporium secalis resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, D.C., A.H.D. Brown & J.J. Burdon, 1992. Genes for scald resistance from wild barley (Hordeum vulgare ssp. spontaneum) and their linkage to isozyme markers. Euphytica 61: 225–231.CrossRefGoogle Scholar
  2. Abbott, D.C., E.S. Lagudah & A.H.D. Brown, 1995. Identification of RFLPs flanking a scald resistance gene on barley chromosome 6. J Heredity 86: 152–154.Google Scholar
  3. Alemayehu, F. & J.E. Parlevliet, 1997. Variation between and within Ethiopian barley landraces. Euphytica 94: 183–189.CrossRefGoogle Scholar
  4. Backes, G., A. Graner, B. Foroughi-Wehr, G. Fiscbeck, G. Wenzel & A. Jahoor, 1995. Localization of quantitatives trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L.). Theor Appl Genet 90: 294–302.CrossRefGoogle Scholar
  5. Baker, R.J. & E.N. Larter, 1963. The inheritance of scald resistance in barley. Can J Genet Cytol 5: 445–449.Google Scholar
  6. Barua, U.M., K.J. Chalmers, C.A. Hackett, W.T.B. Thomas, W. Powell & R. Waugh, 1993. Identification of RAPD markers linked to a Rhynchosporium secalis resistance locus in barley using near-isogenic lines and bulked segregant analysis. Heredity 71: 177–184.PubMedGoogle Scholar
  7. Becker, J. & M. Heun, 1995. Barley microsatellites: allele variation and mapping. Plant Mol Biol 27: 835–845.PubMedCrossRefGoogle Scholar
  8. Bockelman, H.E., E.L. Sharp & R.F. Eslick, 1977. Trisomic analysis of genes for resistance to scald and net blotch in several barley cultivars. Can J Bot 55: 2142–2148.Google Scholar
  9. Boyd, W.J.R., D. Janakiram & W. Palaklang, 1987. Quantitative response to scald (Rhynchosporium secalis). Barley Genetics V: 607–614.Google Scholar
  10. Brown, A.H.D., 1983. Barley. In: S.D. Tanksley & T.J. Orton (Eds.), Isozymes in Plant Genetics and Breeding, Part B, p. 57–77.Google Scholar
  11. Collins, N.C., N.G. Paltridge, C.M. Ford & R.H. Symons, 1996. The Yd2 gene for barley yellow dwarf virus resistance maps close to the centromere on the long arm of barley chromosome 3. Theor Appl Genet 92: 858–864.CrossRefGoogle Scholar
  12. Dyck, P.L. & C.W. Schaller, 1961a. Association of two genes for scald resistance with specific barley chromosome. Can J Genet Cytol 3: 165–169.Google Scholar
  13. Dyck, P.L. & C.W. Schaller, 1961b. Inheritance of resistance in barley to several physiologic races of the scald fungus. Can J Genet Cytol 3: 153–164.Google Scholar
  14. Ford, C.M., N.G. Paltridge, R.L. Moritz, R.J. Simpson & R.H. Symons, 1998. Rapid and informative assays for Yd2, the barley yellow dwarf virus resistance gene, based on the nucleotide sequence of a closely linked gene. Molec Breed 4: 23–31.CrossRefGoogle Scholar
  15. Garvin, D.F., A.H.D. Brown & J.J. Burdon, 1997. Inheritance and chromosome locations of scald-resistance genes derived from Iranian and Turkish wild barleys. Theor Appl Genet 94: 1086–1091.CrossRefGoogle Scholar
  16. Garvin, D.F., A.H.D. Brown, H. Raman & B.J. Read, 2000. Genetic mapping of the barley Rrs14 scald resistance gene with RFLP, isozyme and seed storage protein markers. Plant Breed 119: 193–196.CrossRefGoogle Scholar
  17. Goodwin, S.B., R.W. Allard & R.K. Webster, 1990. A nomenclature for Rhynchosporium secalis pathotypes. Phytopathology 80: 1330–1336.Google Scholar
  18. Graner, A., A. Jahoor, J. Schondelmaier, H. Siedler, K. Pillen, G. Fischbeck, G. Wenzel & R.G. Herrmann, 1991. Construction of an RFLP map of barley. Theor Appl Genet 83: 250–256.CrossRefGoogle Scholar
  19. Graner, A. & A. Tekauz, 1996. RFLP mapping in barley of a dominant gene conferring resistance to scald (Rhynchosporium secalis). Theor Appl Genet 93: 421–425.CrossRefGoogle Scholar
  20. Grønnerød, S., Genetic analysis of resistance in barley (Hordeum vulgare L.) against scald (Rhynchosporium secalis (Oudem.) J.J. Davis). Dr Scient. Thesis 2000:16, Agricultural University of Norway.Google Scholar
  21. Habgood, R.M. & J.D. Hayes, 1971. The inheritance of resistance to Rhynchosporium secalis in barley. Heredity 27: 25–37.Google Scholar
  22. Hansen, L.R. & H.A. Magnus, 1973. Virulence spectrum of Rhynchosporium secalis in Norway and sources of resistance in barley. Phytopath Z 76: 303–313.Google Scholar
  23. Hayes, P., D. Prehn, H. Vivar, T. Blake, A. Comeau, I. Henry, M. Johnston, B. Jones, B. Steffenson, C.A. St.Pierre & F. Chen, 1996. Multiple disease resistance loci and their relationship to agronomic and quality loci in a spring barley population. J Quantitative Trait Loci ( 1-7.Google Scholar
  24. Hinze, K., R.D. Thompson, E. Ritter, F. Salamini & P. Schulze-Lefert, 1991. Restriction fragment length polymorphismmediated targeting of the ml-o resistance locus in barley (Hordeum vulgare). Proc Natl Acad Sci USA 88: 3691–3695.PubMedCrossRefGoogle Scholar
  25. Jackson, L.F. & R.K. Webster, 1976. Race differentiation, distribution, and frequency of Rhynchosporium secalis in California. Phytopathology 66: 719–725.CrossRefGoogle Scholar
  26. Jensen, C.J., 1976. Barley monoploids and doubled monoploids: techniques and experience. Barley Genet 3: 316–245.Google Scholar
  27. Kleinhofs, A., A. Kilian, M.A. Saghai Maroof, R.M. Biyashev, P. Hayes, F.Q. Chen, N. Lapitan, A. Fenwick, T.K. Blake, V. Kanazin, E. Ananiev, L. Dahleen, D. Kudrna, J. Bollinger, S.J. Knapp, B. Liu, M. Sorrells, M. Heun, J.D. Franckowiak, D. Hoffman, R. Skadsen & B.J. Steffenson, 1993. A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86: 705–712.CrossRefGoogle Scholar
  28. Kosambi, D.D., 1944. The estimation of map distances from recombination values. Ann Eugen 12: 172–175.Google Scholar
  29. Liu, ZW., R.M. Biyashev & M.A. Saghai Maroof, 1996. Development of simple sequence repeat DNA markers and their intergation into a barley linkage map. Theor Appl Genet 93: 869–876.Google Scholar
  30. Lynch, M. & B. Walsh, 1998. Genetics and analysis of quantitative traits. Sinauer Ass.Google Scholar
  31. Lyngs Jørgensen, H.J., 1992. Rhynchosporium secalis, Effect on yield, physiologic specialization, and infection biology. Copenhagen, Denmark, The Royal Veterinary and Agricultural University, Ph.D. thesis, pp. 136.Google Scholar
  32. Melchinger, A.E., H.F. Utz & C.C. Schön, 1998. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149: 383–403.PubMedGoogle Scholar
  33. Nielsen, G. & H.B. Johansen, 1986. Proposal for the identification of barley varieties based on the genotypes for 2 hordein and 39 isoenzyme loci of 47 reference varieties. Euphytica 35: 717–728.CrossRefGoogle Scholar
  34. Paltridge, N.G., N.C. Collins, A. Bendahmane & R.H. Symons, 1998. Development of YLM, a codominant PCR marker closely linked to the Yd2 gene for resistance to barley yellow dwarf disease. Theor Appl Genet 96: 1170–1177.CrossRefGoogle Scholar
  35. Patil, V., 2001. Genetics of Rhynchosporium secalis (Oudem.) J.J. Davis resistance in barley (Hordeum vulgare L.). Agricultural University of Norway, Dr scient. Thesis 2001: 21. ISBN 82-575-0471-8.Google Scholar
  36. Penner, G.A., A. Tekauz, E. Reimer, G.J. Scoles, B.G. Rossnagel, P.E. Eckstein, W.G. Legge, P.A. Burnett, T. Ferguson & J.F. Helm, 1996. The genetic basis of scald resistance in western Canadian barley cultivars. Euphytica 92: 367–374.CrossRefGoogle Scholar
  37. Penner, G.A., W.G. Legge & A. Tekauz, 1998. Identification of isolate specific sources of scald resistance in Turkish barley (Hordeum vulgare) accessions. Euphytica 99: 111–114.CrossRefGoogle Scholar
  38. Qi, X., P. Stam & P. Lindhout, 1996. Comparison and integration of four barley genetic maps. Genome 39: 379–394.PubMedGoogle Scholar
  39. Ramsay, L., M. Macaulay, K. McLean, J. Fuller, K. Edwards, S. Tuvesson, M. Morgante, S. degli Ivanissivich, N. Marmiroli, E. Maesti, A. Massari, W. Powell & R. Waugh, 2000. A simple sequence repeat-based linkage map of barley. Genetics 156: 1997–2005.PubMedGoogle Scholar
  40. Russell, J., J. Fuller, G. Young, B. Thomas, G. Taramino, M. Macaulay, R. Waugh & W. Powell, 1997. Discriminating between barley genotypes using microsatellite markers. Genome 40: 442–450.PubMedGoogle Scholar
  41. Salamati, S. & H.A. Magnus, 1997. Leaf blotch severity on spring barley infected by isolates of Rhynchosporium secalis under different temperature and humidity regimes. Plant Pathol 46: 939–945.CrossRefGoogle Scholar
  42. Salamati, S. & A.M. Tronsmo, 1997. Pathogenicity of Rhynchosporium secalis isolates from Norway on 30 cultivars of barley. Plant Pathol 46: 416–424.CrossRefGoogle Scholar
  43. Salamati, S., J. Zhan, J.J. Burdon & B.A. McDonald, 2000. The genetic structure of field populations of Rhynchosporium secalis from three continents suggests moderate gene flow and regular recombination. Phytopathology 90: 901–908.PubMedGoogle Scholar
  44. SAS (Statistical Analysis Systems Institute, Inc), 1988. SAS users guide: statistics. SAS, Cary, North Carolina.Google Scholar
  45. Schweizer, G.F., M. Baumer, G. Daniel, H. Rugel & M.S. Róder, 1995. RFLP markers linked to scald (Rhynchosporium secalis) resistance gene Rh2 in barley. Theor Appl Genet 90: 920–924.CrossRefGoogle Scholar
  46. Søgaard, B. & P. von Wettstein-Knowles, 1987. Barley: Genes and Chromosomes. Carlsberg Res Comm 52: 123–196.CrossRefGoogle Scholar
  47. Spaner, D., L.P. Shugar, T.M. Choo, I. Falak, K.G. Briggs, W.G. Legge, D.E. Falk, S.E. Ullrich, N.A. Tinker, B.J. Steffenson & D.E. Mather, 1998. Mapping of disease resistance loci in barley on the basis of visual assessment of naturally occurring symptoms. Crop Sci 38: 843–850CrossRefGoogle Scholar
  48. Stam, P., 1993. Construction of integrated genetic linkage maps by means of a new computer package: JOINMAP. The Plant Journal 3: 739–744.CrossRefGoogle Scholar
  49. Stam, P. & J.W. van Ooijen, 1995. Joinmap (tm) version 2.0: Software for the calculation of genetic linkage maps. CPRO-DLO, Wageningen.Google Scholar
  50. Stam, P. & A.C. Zeven, 1981. The theoretical proportion of the donor genome in nearisogenic lines of self-fertilizers bred by back-crossing. Euphytica 30: 227–238.CrossRefGoogle Scholar
  51. Tekauz, A., 1991. Pathogenic variation in Rhynchosporium secalis on barley in Canada. Can J Plant Pathol 13: 298–304.CrossRefGoogle Scholar
  52. Thomas, W.T.B., W. Powell, R. Waugh, K.J. Chalmers, U.M. Barua, P. Jack, V. Lea, B.P. Forster, J.S. Swanston, R.P. Ellis, P.R. Hanson & R.C.M. Lance, 1995. Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley (Hordeum vulgare L.). Theor Appl Genet 91: 1037–1047.CrossRefGoogle Scholar
  53. Utz, H.F. & A.E. Melchinger, 1996. PLABQTL: A program for composite interval mapping of QTL. JQTL 2: 1–5.Google Scholar
  54. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23: 4407–4414.PubMedGoogle Scholar
  55. Wells, S.A. & W.P. Skoropad, 1963. Inheritance of reaction to Rhynchosporium secalis in barley. Can J Plant Sci 43: 184–187.CrossRefGoogle Scholar
  56. Zadoks, J.C., T.T. Chang & R.W. Allard, 1974. A decimal code for the growth stages of cereals. Weed Research 14: 415–421.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • S. Grønnerød
    • 1
  • A.G. Marøy
    • 1
  • J. MacKey
    • 2
  • A. Tekauz
    • 3
  • G.A. Penner
    • 3
  • A. Bjørnstad
    • 1
  1. 1.Department of Horticulture and Crop SciencesAgricultural University of NorwayÅsNorway
  2. 2.Department of Plant Breeding ResearchSwedish University of Agricultural SciencesUppsalaSweden
  3. 3.Cereal Research CentreAgriculture CanadaWinnipegCanada

Personalised recommendations