Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Further development and validation of empirical scoring functions for structure-based binding affinity prediction

Abstract

New empirical scoring functions have been developed to estimate the binding affinity of a given protein-ligand complex with known three-dimensional structure. These scoring functions include terms accounting for van der Waals interaction, hydrogen bonding, deformation penalty, and hydrophobic effect. A special feature is that three different algorithms have been implemented to calculate the hydrophobic effect term, which results in three parallel scoring functions. All three scoring functions are calibrated through multivariate regression analysis of a set of 200 protein-ligand complexes and they reproduce the binding free energies of the entire training set with standard deviations of 2.2 kcal/mol, 2.1 kcal/mol, and 2.0 kcal/mol, respectively. These three scoring functions are further combined into a consensus scoring function, X-CSCORE. When tested on an independent set of 30 protein-ligand complexes, X-CSCORE is able to predict their binding free energies with a standard deviation of 2.2 kcal/mol. The potential application of X-CSCORE to molecular docking is also investigated. Our results show that this consensus scoring function improves the docking accuracy considerably when compared to the conventional force field computation used for molecular docking.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Kuntz, I.D., Science, 257 (1992) 1078.

  2. 2.

    Greer, J., Erickson, J.W., Baldwin, J.J. and Varney, M.D., J. Med. Chem., 37 (1994) 1035.

  3. 3.

    Verlinde C.L.M.J. and Hol W.G.J., Structure, 2 (1994) 577.

  4. 4.

    Babine, R.E. and Bender, S.L., Chem. Rev., 97 (1997) 1359.

  5. 5.

    Gane, P.J. and Dean, P.M., Curr. Opin. Struct. Biol., 10 (2000) 401.

  6. 6.

    Walters, W.P., Stahl, M.T. and Murcko, M.A., Drug Discovery Today, 3 (1998) 160.

  7. 7.

    Makino, S. and Kuntz, I.D., J. Comp. Chem., 18 (1997) 1812.

  8. 8.

    Morris, G.M., Goodsell, D.S., Halliday, R., Huey, R., Hart, W.E., Belew, R.K. and Olson, A.J., J. Comput. Chem., 19 (1998) 1639.

  9. 9.

    Jones, G., Wilett, P., Glen, R.C., Leach, A.R. and Taylor, R., J. Mol. Biol., 267 (1997) 727.

  10. 10.

    Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.

  11. 11.

    Böhm, H.J., Curr. Opin. Biotech., 7 (1996) 433.

  12. 12.

    Miranker, A. and Karplus, M., Proteins, 11 (1991) 29.

  13. 13.

    Böhm, H.J., J. Comput. Aid. Mol. Des., 6 (1992) 61.

  14. 14.

    Gillet, V., Johnson, P. and Mata, P., J. Comput. Aid. Mol. Des., 7 (1993) 127.

  15. 15.

    Clark, D.E., Frenkel, D. and Levy, S.A., J. Comput. Aid. Mol. Des., 5 (1995) 13.

  16. 16.

    Pearlman, D.A. and Murcko, M.A., J. Med. Chem., 39 (1996) 1651.

  17. 17.

    Wang, R., Gao, Y., Lai, L., J. Mol. Model., 6(2000) 498-516.

  18. 18.

    Schneider, G., Lee, M.L., Stahl, M. and Schneider, P., J. Comput. Aid. Mol. Des., 14 (2000) 487.

  19. 19.

    Kollman, P.A., Curr. Opin. Struct. Biol., 4 (1994) 240.

  20. 20.

    Ajay and Murcko, M.A., J. Med. Chem., 38 (1995) 4953.

  21. 21.

    Tame, J.R.H., J. Comput. Aid. Mol. Des., 13 (1999) 99.

  22. 22.

    Goodford, P.J.A., J. Med. Chem., 28 (1985) 849.

  23. 23.

    Massova, I. and Kollman, P., Perspect. Drug Disc. Des., 18 (2000) 113.

  24. 24.

    Kollman, P., Chem. Rev., 7 (1993) 2395.

  25. 25.

    Aqvist, J., Medina, C. and Samuelsson, J.E., Protein Eng., 7 (1994) 385.

  26. 26.

    Carlson, H.A. and Jorgensen, W.L., J. Phys. Chem., 99 (1995) 10667.

  27. 27.

    Böhm, H.J., J. Comput. Aid. Mol. Des., 8 (1994) 243.

  28. 28.

    Jain, A.N., J. Comput. Aid. Mol. Des., 10 (1996) 427.

  29. 29.

    Head, R.D., Smythe, M.L., Oprea, T.I., Waller, C.L., Green, S.M. and Marshall, G.R., J. Am. Chem. Soc., 118 (1996) 3959.

  30. 30.

    Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V. and Mee, R.P., J. Comput. Aid. Mol. Des., 11 (1997) 425.

  31. 31.

    Böhm, H.J., J. Comput. Aid. Mol. Des., 12 (1998) 309.

  32. 32.

    Wang, R., Gao, Y. and Lai, L., J. Mol. Model., 4 (1998) 379.

  33. 33.

    Charifson, P.S., Corkery, J.J., Murcko, M.A. and Walters, W.P., J. Med. Chem. 42 (1999) 5100.

  34. 34.

    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E., Nucleic Acids Res., 28 (2000) 235, http://www.rcsb.org/pdb/.

  35. 35.

    SYBYL v6.2, Tripos Inc. St. Louis, MO, U.S.A. http://www.tripos.com/

  36. 36.

    Wang, R., Gao, Y. and Lai, L., Perspect. Drug Disc. Des., 19 (2000) 47.

  37. 37.

    Wang, R. and Wang, S., J. Chem. Inf. Comput. Sci., 41 (2001) 1422.

Download references

Author information

Correspondence to Shaomeng Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, R., Lai, L. & Wang, S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 16, 11–26 (2002). https://doi.org/10.1023/A:1016357811882

Download citation

  • binding affinity prediction
  • consensus scoring
  • empirical scoring molecular docking
  • structure-based drug design