Advertisement

Radiophysics and Quantum Electronics

, Volume 45, Issue 4, pp 262–268 | Cite as

Theoretical Model of Possible Disturbances in the Nighttime Mid-Latitude Ionospheric D Region over an Area of Strong-Earthquake Preparation

  • V. P. Kim
  • S. A. Pulinets
  • V. V. Hegai
Article

Abstract

We present a theoretical model of possible electron-density disturbances in the nighttime mid-latitude ionospheric D region, preceding strong earthquakes. It is found that the electron density in the nighttime D region over an earthquake epicentral zone can considerably increase before severe earthquakes. The horizontal size of the area of disturbed electron density is about 300 km. The disturbance effect is expected to be more pronounced if a powerful VLF transmitter operates in the vicinity of an imminent earthquake epicentral zone. In this case, a very dense ionization layer of daytime D-layer type can be formed at the altitudes of the upper nighttime mesosphere and can give rise to the effect of strong absorption of HF radio waves propagating over the earthquake preparation area.

Keywords

Theoretical Model Strong Absorption Strong Earthquake Radio Wave Dense Ionization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    I. L. Gufeld and V. F. Marenko, Dokl. Rossiisk. Akad. Nauk, 323, No. 6, 1064 (1992).Google Scholar
  2. 2.
    V. V.Voinov, I. L.Gufeld, V. V. Kruglikov, et al., Izv. Rossiisk. Akad. Nauk, Fiz. Zemli, No. 3, 96 (1992).Google Scholar
  3. 3.
    I. L. Gufeld, A. A.Rozhnoy, S. N.Tyumentsev, et al., Izv. Rossiisk. Akad. Nauk, Fiz. Zemli, No. 3, 102 (1992).Google Scholar
  4. 4.
    O. A. Molchanov and M. Hayakawa, J. Geophys. Res. A, 103, No. 8, 17489 (1998).Google Scholar
  5. 5.
    G. A. Gusev, I. L. Gufeld, and O. A. Pokhotelov, Dokl. Rossiisk. Akad. Nauk, 327, No. 1, 65 (1992).Google Scholar
  6. 6.
    V. F. Bonchkovsky, Trudy Geofiz. Inst. Akad. Nauk SSSR, No. 25(152), 192 (1954).Google Scholar
  7. 7.
    G. Kondo, Mems. Kakioka Magn. Observ., 13, No. 1, 11 (1968).Google Scholar
  8. 8.
    J. Hao, Acta Seismol. Sin., 10, No. 2, 207 (1988).Google Scholar
  9. 9.
    V.P. Kim, V. V. Hegai, and P. V. Illich-Svitych, Fiz. Zemli, No. 3, 37 (1994).Google Scholar
  10. 10.
    V. P. Kim, V. V. Hegai, and P. V. Illich-Svitych, Geomagn. Aéron., 33, No. 5, 114 (1993).Google Scholar
  11. 11.
    V.P. Kim and V. V. Hegai, in: M. Hayakawa, ed., Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, Terrapub, Tokyo (1999), p. 619.Google Scholar
  12. 12.
    V. P. Kim and V. V. Hegai, J. Earthquake Prediction Res., No. 6, 275 (1997).Google Scholar
  13. 13.
    C. G. Park and R. A. Helliwell, Radio Sci., 6, No. 2, 299 (1971).Google Scholar
  14. 14.
    J. W. Dungey, Space Sci. Rev., 4, No. 1, 199 (1964).Google Scholar
  15. 15.
    C. S. Roberts, Rev. Geophys. Space Phys., 7, No. 1, 305 (1969).Google Scholar
  16. 16.
    N. Brice, J. Geophys. Res., 69, No. 21, 4515 (1964).Google Scholar
  17. 17.
    M. Ashour-Abdalla, Planet. Space Sci., 20, No. 5, 639 (1972).Google Scholar
  18. 18.
    D. Nunn, Planet. Space Sci., 19, No. 9, 1141 (1971).Google Scholar
  19. 19.
    K. B. Dysthe, J. Geophys. Res., 76, No. 28, 6915 (1971).Google Scholar
  20. 20.
    R. Gendrin, Astrophys. Space Sci., 28, No. 1, 245 (1974).Google Scholar
  21. 21.
    U. S. Inan, T. F. Bell, and R. A. Helliwell, J. Geophys. Res. A, 83, No. 7, 3235 (1978).Google Scholar
  22. 22.
    V. F. Tulinov, Kosm. Issled., 5, No. 2, 241 (1967).Google Scholar
  23. 23.
    G. A. Paulikas, Rev. Geophys. Space. Phys., 13, No. 5, 709 (1975).Google Scholar
  24. 24.
    A. L. Vampola and G. A. Kuck, J. Geophys. Res. A, 83, No. 6, 2543 (1978).Google Scholar
  25. 25.
    A. L. Vampola and D. J. Gorney, J. Geophys. Res. A, 88, No. 8, 6267 (1983).Google Scholar
  26. 26.
    H. D. Voss and L. G. Smith, J. Atmos. Terr. Phys., 42, No. 3, 227 (1980).Google Scholar
  27. 27.
    V. F. Tulinov and S. G. Yakovlev, Kosm. Issled., 7, No. 1, 122 (1969).Google Scholar
  28. 28.
    M. H. Rees, Planet. Space Sci., 11, No. 10, 1209 (1963).Google Scholar
  29. 29.
    L. G. Luhmann, J. Atmos. Terr. Phys., 38, No. 6, 605 (1976).Google Scholar
  30. 30.
    A. D. Danilov, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 24, No. 10, 1171 (1981).Google Scholar
  31. 31.
    S. I. Kozlov, V. A. Vlaskov, and N. V. Smirnova, Kosm. Issled., 26, No. 5, 738 (1988).Google Scholar
  32. 32.
    E. Turunen, H. Matveinen, J. Tolvanen, and H. Ranta, in: R. W. Schunk, ed., Solar-Terrestrial Energy Program: Handbook of Ionospheric Models (1996), p. 1.Google Scholar
  33. 33.
    W. Swider, R. S. Narcisi, J. Keneshea, and J. C. Ulwick, J. Geophys. Res. A, 76, No. 19, 4691 (1971).Google Scholar
  34. 34.
    W. Swider, Pure Appl. Geophys., 127, Nos. 2–3, 403 (1988).Google Scholar
  35. 35.
    T. Ogawa and T.Tohmatsu, Rep. Ionosph. Space Res., 20, No. 4, 395 (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • V. P. Kim
    • 1
  • S. A. Pulinets
    • 1
  • V. V. Hegai
    • 1
  1. 1.Institute of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation of the Russian Academy of SciencesTroitsk, Moscow RegionRussia

Personalised recommendations