Ecotoxicology

, Volume 11, Issue 4, pp 265–277 | Cite as

Sublethal Effects of Exposure to Chemical Compounds: A Cause for the Decline in Atlantic Eels?

Article

Abstract

Because of their unusual life cycle, American and European eels (Anguilla rostrata Lesueur and A. anguilla L.), are particularly exposed to pollutant effects. Because silver eels fast when they leave the freshwater system, the transoceanic migration forces them to constitute energy reserves in the form of muscle lipids, that are needed for successful spawning. Using species biological data, toxicological and ecotoxicological information, hypotheses are given to assess the contribution of pollution from freshwater sources to the recorded decline in the American and European eels fisheries since the 1980s. This paper first describes the lipid storage problems and the relative migratory capacities. Then several studies on the accumulation of xenobiotics in various anatomical compartments, on the biological half-lives of these compounds, and on their sublethal toxicity, are reviewed. During migration, lipid mobilization returns persistent lipophilic pollutants back into circulation, these being concentrated particularly in gonads at the crucial time of gametogenesis. Extrapolation of toxicological analysis (individual physiology) to the population level (spawning success) suggests that the quality of future spawners leaving freshwaters is one of the prime factors for the conservation of this threatened species.

American and European eel population lipids migration pollution reproduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aksnes, A., Gjerde, B. and Roald, S. (1986). Biological, chemical and organoleptic changes during maturation of farmed atlantic salmon, Salmo salar. Aquaculture 53, 7–20.Google Scholar
  2. Ashworth, S.T. and Blanc, G. (1997). Anguillicola crassus, un colonisateur agressif récemment introduit dans les stocks européens d'anguilles. Bull. Fr. Pêche Piscic. 344, 335–42.Google Scholar
  3. Barton, B.A., Schreck, C.B. and Barton, L.D. (1987). Effects of chronic cortisol administration and daily acute stress on growth, physiological conditions, and stress responses in juvenile rainbow trout. Dis. Aquat. Org. 2, 173–85.Google Scholar
  4. Bergersen, R. and Klemetsen, A. (1988). Freshwater eel Anguilla anguilla (L.) from north Norway, with emphasis on occurrence, food, age, and downstream migration. Nord. J. Freshw. Res. 64, 54–66.Google Scholar
  5. Boëtius, I. and Boëtius, J. (1980). Experimental maturation of female silver eels, Anguilla anguilla Estimates of fecundity and energy reserves for migration and spawning. Dana 1, 1–28.Google Scholar
  6. Boëtius, I. and Boëtius, J. (1985). Lipid and protein content in Anguilla anguilla during growth and starvation. Dana 4, 1–17.Google Scholar
  7. Brion, F., Porcher, J.-M., Thybaud, E. and Vindimian, E. (1998). Polluants toxiques: les hormones dans tous leurs états. Biofutur 177, 35–37.Google Scholar
  8. Brown, C.L., Doroshov, S.L., Cochran, M.D. and Bern, H.A. (1989). Enhanced survival in swiped bass fingerlings after maternal triiodothyronine treatment. Fish. Physiol. Biochem. 7, 295.Google Scholar
  9. Bruggeman, W.A., Opperhuizen, A., Wijbenga, A. and Hutzinger, O. (1984). Bioaccumulation of super-lipophilic chemicals in fish. Toxicol. Environ. Chem. 7, 173–89.Google Scholar
  10. Bruslé, J. (1991). The eel (Anguilla sp.) and organic chemical pollutants. Sci. Tot. Environ. 102, 1–19.Google Scholar
  11. Bruslé, J. (1994). L'anguille Européenne Anguilla anguilla, un poisson sensible aux stress environnementaux et vulnérable à diverses atteintes pathogènes. Bull. Fr. Pêche Piscic. 335, 237–60.Google Scholar
  12. Bury, N.R., Eddy, F.B. and Codd, G.A. (1996). Stress Responses of Brown Trout, Salmo trutta L, to the Cyanobacterium, Microcystis aeruginosa. Environ. Toxicol. Water Qual. 11, 187–93.Google Scholar
  13. Calow, P. (1991). Physiological costs of combatting chemical toxicants: ecological implications. Comp. Biochem. Physiol. 100C(1/2), 3–6.Google Scholar
  14. Carragher, J.F. and Sumpter, J.P. (1990). The effect of cortisol on the secretion of sex steroids from cultured ovarian follicles of rainbow trout. Gen. Comp. Endocrinol. 81, 207–16.Google Scholar
  15. Casselman, J.M., Marcogliese, L.A. and Hodson, P.V. (1998). The american eel, Anguilla rostrata, Stock of the Upper St Lawrence River and Lake Ontario: Long-term Trends, Decreasing Abundance, Cause and Effect. 1998 American Fisheries Society Annual Meeting, 26 August 1998, Session 4.Google Scholar
  16. Castelnaud, G., Guerault, D., Desaunay, Y. and Elie, P. (1994). Production et abondance de la civelle en France au début des années 90. Bull. Fr. Pêche Piscic. 335, 263–87.Google Scholar
  17. Castonguay, M., Dutil, J.-D. and Desjardins, C. (1989). Distinction between American eels (Anguilla rostrata) of different geographic origins on the basis of their organochlorine contaminant levels. Can. J. Fish. Aquat. Sci. 46, 836–43.Google Scholar
  18. Castonguay, M., Hodson, P.V., Couillard, C.M., Eckersley, M.J., Dutil, J.-D. and Verreault, G. (1994a). Why is recruitement of the American eel, Anguilla rostrata, declining in the St Lawrence River and Gulf? Can. J. Fish. Aquat. Sci. 51, 479–88.Google Scholar
  19. Castonguay, M., Hodson, P.V., Moriarty, C., Drinkwater, K.F. and Jessop, B.M. (1994b). Is there a role of ocean environment in American and European eel decline? Fish. Oceanogr. 3(3), 197–203.Google Scholar
  20. Ceron, J.J., Ferrando, M.D., Sancho, E., Gutierrez-Panizo, C. and Andreu-Moliner, E. (1996). Effects of diazinon exposure on cholinesterase activity in different tissues of European eel (Anguilla anguilla). Ecotox. Environ. Safety 35, 222–5.Google Scholar
  21. Chan, D.K.O. and Woo, N.Y.S. (1978). Effect of cortisol on the metabolism of the eel, Anguilla japonica. Gen. Comp. Endocrinol. 35, 205–15.Google Scholar
  22. Cyr, D.G. and Eales, J.G. (1988). In vitro effects of thyroid hormones on gonadotropin-induced estradiol-17β, secretion by ovarian follicles of rainbow trout, Salmo gairdneri. Gen. Comp. Endocrinol. 69, 80.Google Scholar
  23. Dave, G., Johannsson-Sjöbeck, M.-L., Larsson, Å., Lewander, K. and Lidman, U. (1979). Effects of cortisol on the fatty acid composition of the total blood plasma lipids in the European eel, Anguilla anguilla L. Comp. Biochem. Physiol. 64A, 37–40.Google Scholar
  24. Davis, K.B., Torrance, P., Parker, N.C. and Shuttle, M.A. (1985). Growth, body composition and hepatic tyrosine aminotransferase activity in cortisol-fed channel catfish, Ictalurus punctatus. J. Fish. Biol. 29, 177–84.Google Scholar
  25. De Boer, J., van der Valk, F., Kerkhoff, M.A.T. and Hagel, P. (1994). 8-Year study on the elimination of PCBs and other organochlorine compounds from eel (Anguilla anguilla) under natural conditions. Environ. Sci. Technol. 28(13), 2242–8.Google Scholar
  26. Degani, G., Hahamu, H. and Levanon, D. (1986). The relationship of eel Anguilla anguilla (L.) body size, lipid, protein, glucose, ash, moisture composition and enzyme activity (aldolase). Comp Biochem Physiol 86A(4), 739–45.Google Scholar
  27. Dekker, W. (1998). Long-term trends in the glasseels immigrating at Den Oever, the Netherlands. Bull. Fr. Pêche Piscic. 349, 199–214.Google Scholar
  28. Dekker, W. (2000). Impact of yellow eel exploitation on spawner production in Lake IJsselmeer, the Netherlands. Dana 12, 17–32.Google Scholar
  29. Desaunay, Y. and Guerault, D. (1997). Seasonal and long-term changes in biometrics of eel larvae—a possible relationship between recruitment variation and north Atlantic ecosystem productivity. J. Fish. Biol. 51(Suppl. A), 317–339.Google Scholar
  30. Dickhoff, W.W., Yan, L., Plisetskaya, E.M., Sullivan, C.V., Swanson, P., Hara, A. and Bernard, M.G. (1989). Relationship between metabolic and reproductive hormones in salmonid fish. Fish. Physiol. Biochem. 7, 147.Google Scholar
  31. Durif, C., Elie, P., Dufour, S., Marchelidon, J. and Vidal, B. (2000). Analysis of morphological and physiological parameters during the silvering process of the European eel (Anguilla anguilla) in the lake of Grand-Lieu (France). Cybium 24(Suppl. 3), 63–74.Google Scholar
  32. Dutil, J.D., Legare, B. and Desjardins, C. (1985). Discrimination d'un stock de poisson, l'anguille (Anguilla rostrata), basée sur la présence d'un produit chimique de synthèse, le mirex. Can. J. Fish. Aquat. Sci. 42(3), 455–58.Google Scholar
  33. Epstein, F.H., Cynamon, M. and Mc Kay, W. (1971). Endocrine control of Na-K-ATPase and seawater adaptation in Anguilla rostrata. Gen. Comp. Endocrinol. 16, 323–28.Google Scholar
  34. European Commission, (1998). Statement from the European eel industry farmers, traders, processors & institutions meeting with the European Commission DG XIV Brussels 27 October 1998, 11p.Google Scholar
  35. Ewald, G. and Larsson, P. (1994). Partitioning of 14C-labelled 2,2′,4,4′-tetrachlorobiphenyl between water and fish lipids. Environ. Toxicol. Chem. 13(10), 1577–80.Google Scholar
  36. Fernandez-Vega, C., Sancho, E., Ferrando, M.D. and Andreu-Moliner, E. (1999). Thiobencarb toxicity and plasma AchE inhibition in the European eel. J. Environ. Sci. Health Part B 34(1), 61–73.Google Scholar
  37. Feunteun, E. (2002). Management of European eel population (Anguilla anguilla): an impossible bargain? Ecol. Eng. 18, 575–591.Google Scholar
  38. Feunteun, E. and Vigneux, E. (1998). L'Anguille Européenne. 10ème Réunion du groupe de travail anguille. EIFAC/ICES, 23–27/09/96, Ijmuiden (Pays-Bas). Bull. Fr. Pêche Piscic. 349, Preface.Google Scholar
  39. Feunteun, E., Acou, A., Laffaille, P. and Legault, A. (2000). European eel (Anguilla anguilla): prediction of spawner escapement from continental population parameters. Can. J. Fish. Aquat. Sci. 57, 1627–635.Google Scholar
  40. Fontaine, M. and Olivereau, M. (1962). Nutrition et sexualité chez les poissons. Ann. Nutr. Alim. 16, A125–52.Google Scholar
  41. Fontaine, Y.A. (1994). L'argenture de l'anguille: métamorphose, anticipation, adaptation. Bull. Fr. Pêche Piscic. 335, 171–85.Google Scholar
  42. Foster, G.D. and Moon, T.W. (1986). Cortisol and liver metabolism of immature American eels, Anguilla rostrata (Lesueur). Fish Physiol Biochem 1(2), 113–24.Google Scholar
  43. Freeman, H.C. and Idler, D.R. (1973). Effects of corticosteroids on liver transaminases in two salmonids, the rainbow trout (Salmo gairdneri) and the brook trout (Salvelinus fontinalis). Gen. Comp. Endocrinol. 20, 69–76.Google Scholar
  44. Gagnon, M.M., Dodson, J.J., Hodson, P.V., Van Der Kraak, G. and Carey, J.H. (1994). Seasonal effects of bleached kraft mill effluent on reproductive parameters of white sucker (Catostomus commersoni) populations of the St Maurice River, Quebec, Canada. Can. J. Fish. Aquat. Sci. 51, 337–47.Google Scholar
  45. Geyer, H.J., Scheunert, I., Bruggemann, R., Matthies, M., Steinberg, C.E.W., Zitko, V., Kettrup, A. and Garrison, W. (1994). The Relevance of Aquatic Organisms' Lipid Content to the Toxicity of Lipophilic Chemicals: Toxicity of Lindane to Different Fish Species. Ecotoxicol. Environ. Safety 28, 53–70.Google Scholar
  46. Giam, C.S., Chan, H.S. and Neff, G.S. (1978). Phthalate ester plasticizers, DDT, DDE and polychlorinated biphenyls in biota from the Gulf of Mexico. Mar. Pollut. Bull. 9(9), 249–51.Google Scholar
  47. Gimeno, L., Ferrando, M.D., Sanchez, S., Gimeno, L.O. and Andreu, E. (1995). Pesticide effects on eel metabolism. Ecotoxicol. Environ. Safety 31, 153–57.Google Scholar
  48. Guiney, P.D., Melancon, M.J., Lech, J.R. and Petersen, R.E. (1979). Effects of egg and sperm maturation and spawning on the distribution and elimination of polychlorinated biphenyl in rainbow trout (Salmo gairdneri). Toxicol. Appl. Pharmacol. 47, 261–72.Google Scholar
  49. Hamilton, R.M. (1985). Discharges of pesticides to the Rivers Mole and Taw, their accumulation in fish flesh and possible effects on fish stocks. J. Fish. Biol. 27(Suppl. A), 139–49.Google Scholar
  50. Haux, C., Sjöbeck, M. and Larsson, A. (1985). Physiological stress responses in a wild fish population of perch (Perca fluviatilis) after capture and during subsequent recovery. Mar. Environ. Res. 15, 77–95.Google Scholar
  51. Hebert, C.E. and Keenleyside, K.A. (1995). To normalize or not to normalize? Fat is the question. Environ. Toxicol. Chem. 14(5), 801–7.Google Scholar
  52. Hendricks, A.J. (1995). Modelling equilibrium concentrations of microcontaminants in organisms of the Rhine delta—can average field residues in the aquatic foodchain be predicted from laboratory accumulation? Review. Aquat. Toxicol. 31(1), 1–25.Google Scholar
  53. Hernandez, L.M., Rico, M.C., Gonzales, M.J., Montero, M.C. and Fernandez, M.A. (1987). Residues of organochlorine chemicals and concentrations of heavy metals in ciconiform eggs in relation to diet and habitat. J. Environ. Sci. Health B22(2), 245–58.Google Scholar
  54. Hodson, P.V., Gagnon, M., Dodson, J.J. and Couillard, C.M. (1992a). Physiological responses of fish in “control” and BKME-polluted rivers. Presented at the 13th Annual Meeting of the Society of Environmental Toxicology and Chemistry, Cincinnati Ohio, 9–12 November 1992.Google Scholar
  55. Hodson, P.V., McWhirter, M., Ralph, K., Gray, B., Thivierge, D., Carey, J.H., Van Der Kraak, G., Whittle, D.M. and Levesque, M.-C. (1992b). Effects of bleached kraft mill effluent on fish in the St Maurice River, Quebec. Environ. Toxicol. Chem. 11, 1635–51.Google Scholar
  56. Hodson, P.V., Desjardins, C., Pelletier, E., Castonguay, M. and Couillard, C.M. (1992c). Decrease in chemical contamination of American eels (Anguilla rostrata) captured in the estuary of the St Lawrence River. Can. Tech. Rep. Fish Aquat. Sci. No. 1876.Google Scholar
  57. Hodson, P.V., Castonguay, M., Couillard, C.M., Desjardins, C., Pelletier, E. and McLeod, R. (1994). Spatial and temporal variations in chemical contamination of American eels, Anguilla rostrata, captured in the estuarty of the St Lawrence River. Can. J. Fish. Aquat. Sci. 51, 464–78.Google Scholar
  58. Hontela, A. (1997). Endocrine and physiological responses of fish to xenobiotics: role of glucocorticoid hormones. Rev. Toxicol. 1, 1–46.Google Scholar
  59. Hontela, A. (1998). Biomarqueurs endocriniens: indicateurs hormonaux de toxicité sublétale chez les poissons. In Lagadic, et al. (ed.) Utilisation de biomarqueurs pour la surveillance de la qualité de l'environnement, Technique & documentation. pp. 183–200.Google Scholar
  60. Hontela, A., Rasmussen, J.B., Audet, C. and Chevalier, G. (1992). Impaired cortisol stres response in fish from environments polluted by PAHs, PCBs, and mercury. Arch. Environ. Contamin. Toxicol. 22, 278–83.Google Scholar
  61. Hontela, A., Dumont, P., Duclos, D. and Fortin, R. (1995). Endocrine and metabolic dysfunction in yellow perch, Perca flavescens, exposed to organic contaminants and heavy metals in the St Lawrence river. Environ. Toxicol. Chem. 14, 725–31.Google Scholar
  62. Hose, J.E., Hannah, J.B., Landolt, M.L., Miller, B.S., Felton, S.P. and Iwaoka, W.T. (1981). Uptake of benzo[α]pyrene by gonadal tissue of flatfish (family Pleuronectidae) and its effects on subsequent egg development. J. Toxicol. Env. Health 7, 991–1000.Google Scholar
  63. Hughes, G.M., Szegletes, T. and Nemcsok, J. (1997). Study of the effects of brief exposure to an organophosphorus insecticide (methidathion) on blood characteristics of carp (Cyprinus carpio). Acta. Biol. Hung. 48(2), 157–66.Google Scholar
  64. ICES (1998). International Council for the Exploration of the Sea. European Eel. Extract of the report of the Advisory Commitee on Fishery Management to the European Commission No. 11.Google Scholar
  65. ICES (1999). ICES cooperative research report No. 229. Report of the ICES Advisory Commitee on Fisheries Management 1998.Google Scholar
  66. ICES (2000). Report of the EIFAC/ICES Advisory Commitee on Fisheries Management, Working Group on Eels, St Andrews, NB, Canada, 28 August–1 September 2000 ICES CM 2001/ACFM 03.Google Scholar
  67. IOMC (1995). Substance profiles for the persistent organic pollutants. Inter-organization programme for the sound management of chemicals POPs assessment report, December 1995, Chapter 6.Google Scholar
  68. Johnson, L.L., Misitano, D., Sol, S.Y., Nelson, G.M., French, B., Ylitalo, G.M. and Hom, T. (1998). Contaminants effects on ovarian development and spawning success in rock sole from Puget Sound, Washington. Trans. Am. Fish. Soc. 127(3), 375–92.Google Scholar
  69. Kennish, M.J., Belton, T.J., Hauge, P., Lockwood, K. and Ruppel, B.E. (1992). Polychlorinated biphenyls in estuarine and coastal marine waters of New Jersey: a review of contamination problems. Rev. Sci. Aquat. 6, 275–93.Google Scholar
  70. Kime, D.E. (1995). The effects of pollution on reproduction in fish. Rev. Fish. Biol. Fisheries 5, 52–96.Google Scholar
  71. Klumpp, D.W. and Vonwesternhagen, H. (1995). Biological effects of pollutants in Australian tropical coastal water—Embryonic malformations and chromosomal aberrations in developing fish eggs. Mar. Poll. Bull. 30(2), 158–65.Google Scholar
  72. Knights, B. (1997). Risk assessment and management of contamination of eels (Anguilla spp.) by persistent xenobiotic organochlorine compounds. Chem. Ecol. 13, 171–12.Google Scholar
  73. Lal, B. and Singh, T.P. (1987). The effect of malathion and γ-BHC on the lipid metabolism in relation to reproduction in the tropical teleost, Clarias batrachus. Environ. Pollut. 48, 37–47.Google Scholar
  74. Lambert, P. and Feunteun, E. (1998). Compte rendu des journées anguilles de Paimpont du 23 au 25 septembre 1998, GRISAM.Google Scholar
  75. Larsson, P., Backe, C., Bremle, G., Eklov, A. and Okla, L. (1996). Persistent pollutants in a salmon population (Salmo salar) of the southern Baltic sea. Can. J. Fish. Aqu. Sci. 53(1), 62–69.Google Scholar
  76. Leatherland, J.F., Cho, C.Y. and Slinger, S.J. (1977). Effects of diet, ambient temperature and holding conditions on plasma thyroxine levels in rainbow trout, Salmo gairdneri. J. Fish. Res. Board Can. 34, 677–82.Google Scholar
  77. Leatherland, J.F. and Sonstegard, R.A. (1977). On the effect of dietary mirex or PCB (Arochlor 1254) on serum thyroxine (T4) and triiodothyronine (T3) levels in rainbow trout. Acta Endocr. (Suppl.) 212, 234.Google Scholar
  78. Leatherland, J.F. and Sonstegard, R.A. (1978). Lowering of serum thyroxine and triiodothyronine levels in yearling coho salmon, Oncorhynchus kisutch, by dietary mirex and PCBs. J. Fish. Res. Board. Can. 35, 1285–9.Google Scholar
  79. Leatherland, J.F. and Sonstegard, R.A. (1980). Effect of dietary Mirex and PCB's in combination with food deprivation and testosterone administration on thyroid activity and bioaccumulation of organochlorines in rainbow trout, Salmo gairneri Richardson. J. Fish. Diseases 3(2), 115–124.Google Scholar
  80. Legault, A. (1994). Etude préliminaire du recrutement fluvial de l'anguille. Bull. Fr. Pêche Piscic 335, 33–41.Google Scholar
  81. Levin, SA, Harwell, MA, Kelly, JR and Kimball, KD (1989). In Levin et al. (ed.) Ecotoxicology: Problems and Approaches New York: Springer.Google Scholar
  82. Lidman, U., Dave, G., Johannsson-Sjöbeck, M.-L., Larsson, Å. and Lewander, K. (1979). Metabolic effects of cortisol on the European eel, Anguilla anguilla (LeSueur). Comp. Biochem. Physiol. 63B, 339–44.Google Scholar
  83. Lopez, E. and Fontaine, Y.A. (1990). Stimulation hormonale, in vivo, de l'ovaire d'anguille européenne au stade jaune. Reprod. Nut. Dev. 30, 577–82.Google Scholar
  84. Mann, R.H.K. and Mills, C.A. (1979). Demographic aspects of fish fecundity. In Miller, P.J. (ed.). Fish Phenology: Anabolic Adaptativeness Inteleosts. New York: Academic Press, pp. 161–74.Google Scholar
  85. Mason, C.F. (1993). Organochlorine pesticide residues and PCBs in eels Anguilla anguilla from some British reedbeds. Chemosphere 26, 2289–92.Google Scholar
  86. McCarthy, T.K. and Cullen, P. (2000). The River Shannon silver eel fisheries: variations in commercial and experimental catch levels. Dana 12, 59–68.Google Scholar
  87. Michel, P. and Oberdorff, T. (1995). Feeding habits of fourteen european freshwater fish species. Cybium 19(1), 5–46.Google Scholar
  88. Miller, M.A. (1993). Maternal transfert of organochlorine compounds in salmonines to their eggs. Can. J. Fish. Aquat. Sci. 50, 1405–13.Google Scholar
  89. Mommsen, T.P., Vijayan, M.M. and Moon, T.W. (1999). Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev. Fish. Biol. Fisheries 9, 211–68.Google Scholar
  90. Moriarty, C. and Dekker, W. (1997). Management of the European eel. Fish. Bull. 15, 109p.Google Scholar
  91. Murty, A.S. and Devi, A.P. (1982). The effect of endosulfan and its isomers on tissue protein glycogen and lipids in the fish, Channa punctatus. Pestic. Biochem. Physiol. 17, 280–6.Google Scholar
  92. Nassour, I. and Léger, C.L. (1989). Deposition and mobilisation of body fat during sexual maturation in female trout (Salmo gairdneri Richardson). Aquat. Living. Resour. 2, 153–9.Google Scholar
  93. Odgen, J.C. (1970). Relative abundance, food habits, and age of the American eel, Anguilla rostrata (Lesueur), in certain New Jersey streams. Trans. Am. Fish. Soc. 99, 54–9.Google Scholar
  94. Olivereau, M. (1966). Effet d'un traitement par le cortisol sur la structure histologique de l'interrénal et de quelques tissus de l'Anguille. Ann. Endocrin. Paris. 27, 549–60.Google Scholar
  95. Pedersen, M.I. and Dieperink, C. (2000). Fishing mortality on silver eels, Anguilla anguilla (L.), in Denmark. Dana 12, 77–82.Google Scholar
  96. Peterson, R.H. (1997). The American eel in eastern Canada: stock status and management strategies. Proceedings of Eel Management Workshop, 13–14 January 1997, Quebec City, QC, Can Tech. Rep. Fish. Aquat. Sci. No. 2196.Google Scholar
  97. Rasmussen, J.B., Rowan, D.J., Lean, D.R.S. and Carey, J.H. (1990). Food chain structure in Ontario lakes determines PCB levels in lake trout (Salvelinus namaycush) and other pelagic fish. Can. J. Fish. Aquat. Sci. 47, 2030–8.Google Scholar
  98. Rether, B., Masfaraud, J.-F., Keith, G., Devaux, A. and Monod, G. (1997). Biomarqueurs de génotoxicité chez les végétaux et les animaux. In Lagadic et al. (eds) Biomarqueurs en écotoxicologie, aspects fondamentaux. Paris: Masson, pp. 185–208.Google Scholar
  99. Richkus, W.A. and Whalen, K. (2000). Evidence for a decline in the abundance of the American eel, Anguilla rostrata (Lesueur), in North America since the early 1980s. Dana 12, 83–97.Google Scholar
  100. Roche, H., Buet, A., Jonot, O. and Ramade, F. (2000). Organochlroine residues in european eel (Anguilla anguilla), crucian carp (Carassius carassius) and catfish (Ictalurus nebulosus) from Vaccarés lagoon (French National Nature Reserve of Camargue)—effects on some physiological parameters. Aquat Toxicol 48, 443–59.Google Scholar
  101. Ryan, J.J., Lau, P.Y., Pilon, J.C., Lewis, D., McLeod, H.A. and Gervals, A. (1984). Incidence and levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin in Lake Ontario commercial fish. Environ. Sci. Technol. 18, 719–21.Google Scholar
  102. Safe, S. (1990). Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: Environmental and mechanistic considerations wich support the development of toxic equivalency factors. Crit. Rev. Toxicol. 21, 51–88.Google Scholar
  103. Sancho, E., Ferrando, M.D. and Andreu, E. (1998). Effects of sublethal exposure to a pesticide on levels of energetic compounds in Anguilla anguilla. J. Environ. Sci. Health—Part B 33(4), 411–24.Google Scholar
  104. Schreck, C.B. (1990). Physiological, behavioural, and performance indicators of stress. Am. Fish. Soc. Symposium 8, 29–37.Google Scholar
  105. Seitz, A. and Ratte, H.T. (1991). Aquatic ecotoxicology: on the problems of extrapolation from laboratory experiments with individuals and populations to community effects in the field. Comp. Biochem. Physiol. 100C(1/2), 301–4.Google Scholar
  106. Sheridan, M.A. (1988). Lipid dynamics in fish: aspects of absorption, transportation, deposition and mobilisation. Comp. Biochem. Physiol. 90B, 679–90.Google Scholar
  107. Sims, G.G., Campbell, J.R., Zemlyak, F. and Graham, J.M. (1977). Organochlorine residues in fish and fishery products from the Northwest Atlantic. Bull. Environ. Contam. Toxicol. 18, 697–705.Google Scholar
  108. Singh, H. (1989). Interaction of xenobiotics with reproductive endocrine functions in a teleost, Monopterus albus. Mar. Env. Res. 28, 285–9.Google Scholar
  109. Singh, P.B. (1992). Impact of malathion and γ-BHC on lipid metabolism in the freshwater female catfish, Heteropneutes fossilis. Ecotoxicol. Environ. Safety 23, 22–32.Google Scholar
  110. Singh, P.B. and Singh, T.P. (1992). Impact of γ-BHC on lipid class levels and their modulation by reproductive hormones in the freshwater catfish, Heteropneutes fossilis. Bull. Env. Contam. Toxicol. 48, 23–30.Google Scholar
  111. Solomon, K., Bright, D., Hodson, P., Lehtinen, K.J., McKague, B. and Rodgers, J. (1997). Evaluation of ecological risks associated with the use of chlorine dioxide for the bleaching of pulp scientific progress since 1993. 3rd International Conference on Environmental Fate and Effects of Pulp and Paper Mill Effluents, Rotorua (New Zealand) 9–13 November 1997, AET report.Google Scholar
  112. Svedäng, H. and Wickström, H. (1997). Low fat contents in female silver eels: indications of insufficient energetic stores for migration and gonadal development. J. Fish. Biol. 50, 475–86.Google Scholar
  113. Tesch, F.W. (1974). Speed and direction of silver and yellow eels, Anguilla anguilla, released and tracked in the open North Sea. Ber dt wiss Kommn, Meeresforsch 23, 181–97.Google Scholar
  114. Tesch, F.W. (1977). The Eel Biology and Management of Anguillid Eels. Chapman and Hall Ltd, London.Google Scholar
  115. Thomann, R.V. (1989). Bioaccumulation model of organic chemical distribution in aquatic food chain. Environ. Sci. Technol. 23, 694–707.Google Scholar
  116. Thomann, R.V. and Connolly, J.P. (1984). Model of PCB in the Lake Michigan lake trout food chain. Environ. Sci. Technol. 18, 65–71.Google Scholar
  117. Thomann, R.V., Connolly, J.P. and Parkerton, T.F. (1992). An equilibrium model of organic chemical accumulation in aquatic food webs with sedimentation interactions. Environ. Toxicol. Chem. 11, 615–29.Google Scholar
  118. Thomas, P. and Budiantara, L. (1995). Reproductive life history stages sensitive to oil and naphthalene in atlantic croaker. Mar. Environ. Res. 39(1–4), 147–50.Google Scholar
  119. Tulonen, J. and Vuorinen, P.K. (1996). Concentrations of PCBs and other organochlorine compounds in eels (Anguilla anguilla L.) of the Vanajavesi watercourse in southern Finland, 1990–1993. Sci. Total. Environ. 187, 11–18.Google Scholar
  120. Van der Oost, R., Van Schooten, F.J., Ariese, F., Heida, H., Satumalay, K. and Vermeulen, N.P.E. (1994). Bioaccumulation, biotransformation and DNA binding of PAHs in feral eel (Anguilla anguilla) exposed to polluted sediments: a field survey. Environ. Toxicol. Chem. 13(6), 859–70.Google Scholar
  121. Van der Oost, R., Opperhuizen, A., Satumalay, K., Heida, H. and Vermeulen, N.P.E. (1996). Biomonitoring aquatic pollution with feral eel (Anguilla anguilla) I. Bioaccumulation: biotasediment ratios of PCBs, OCPs, PCDDs and PCDFs. Aquat. Toxicol. 35, 21–46.Google Scholar
  122. Van der Werf, H.M.G. (1996). Assessing the impact of pesticides on the environment. Agri. Ecos. Environ. 60, 81–96.Google Scholar
  123. Vijayan, M.M., Feist, G., Otto, D.M.E., Schreck, C.B. and Moon, T.W. (1997). 3,3′,4,4′-tetrachlorobiphenyl affects cortisol dynamics and hepatic function in rainbow trout. Aquat. Toxicol. 37, 87–98.Google Scholar
  124. Weatherley, N.S., Davies, G.L. and Ellery, S. (1997). Polychlorinated biphenyls and organochlorine pesticides in eels (Anguilla anguilla L.) from Welsh Rivers. Environ. Poll. 95, 127–34.Google Scholar
  125. Weber, G.W., Okimoto, D.K., Richman, N.H. and Grau, E.G. (1992). Patterns of thyroxine and triiodothyronine in serum and follicle-bound oocytes of the tilapia, Oreochromis mossambicus during oogenesis. Gen. Comp. Endocrinol. 85, 392.Google Scholar
  126. Wester, P.W., Canton, J.H. and Bisschop, A. (1985). Histopathological study of Poecillia reticulata (guppy) after long-term β-hexachlorocyclohexane exposure. Aquat. Toxicol. 6, 271–96.Google Scholar
  127. Wiesmüller, T. and Schlatterer, B. (1999). PCDDs/PCDFs and coplanar PCBs in eels (Anguilla anguilla) from different areas of the rivers Havel and Oder in the state of Brandenbourg. Chemosphere 38(2), 325–34.Google Scholar
  128. Yadav, A.K. and Singh, T.P. (1987). Pesticide-induced impairement of thyroid physiology in the freshwater catfish, Heteropneutes fossilis. Environ. Pollut. 43, 29–38.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Fonctionnement des Ecosystèmes et Biologie de la Conservation, UMR 6553 EcobioUniversité de RennesRennes cedexFrance;

Personalised recommendations