Studia Logica

, Volume 71, Issue 1, pp 87–118 | Cite as

First Order Extensions of Classical Systems of Modal Logic; The role of the Barcan schemas

  • Horacio Arló Costa


The paper studies first order extensions of classical systems of modal logic (see (Chellas, 1980, part III)). We focus on the role of the Barcan formulas. It is shown that these formulas correspond to fundamental properties of neighborhood frames. The results have interesting applications in epistemic logic. In particular we suggest that the proposed models can be used in order to study monadic operators of probability (Kyburg, 1990) and likelihood (Halpern-Rabin, 1987).

First order modal logic Epistemic logic Barcan formulas Logic of likelihoood 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aumann, R. J., ‘Notes on interactive epistemology’, version 94.06.16, unpublished manuscript.Google Scholar
  2. Barcan Marcus, R., ‘A functional calculus of first order based on strict implication’, Journal of Symbolic Logic11, 1-16, 1946.Google Scholar
  3. Barcan Marcus, R., ‘Modalities and intensional languages’, Synthese, 303-322, 1961. Reprinted in Modalities: Philosophical Essays, Oxford University Press, 1993.Google Scholar
  4. Barwise, J., ‘Three views of common knowledge’, TARK II, 1988, 365-379.Google Scholar
  5. Vicious Circles: On the Mathematics of Non-Wellfounded PhenomenaCSLI Publications, February 1996.Google Scholar
  6. Carnap, R., Meaning and Necessity, University of Chicago Press, Chicago, 1947.Google Scholar
  7. Chellas, B. F., Modal Logic: An Introduction, Cambridge University Press, Cambridge, 1980.Google Scholar
  8. Cohen, L. J., The Probable and the Provable, Oxford: Clarendon Press, 1977.Google Scholar
  9. Hughes, G. E., and M. J. Cresswell, A New Introduction to Modal Logic, Routledge, 1996.Google Scholar
  10. Dubois, D., and H. Prade, ‘Belief change and possibility theory’, in Belief Change, P. Gardenfors (ed.), Cambridge Tracts in Theoretical Computer Science 29, Cambridge University Press, 1992, 142-183.Google Scholar
  11. Fagin, R., J. Y. Halpern, Y. Moses and M. Y. Vardi, Reasoning about Knowledge, MIT Press, Cambridge, Massachusetts, 1995.Google Scholar
  12. Fagin, R., and J. Y. Halpern, ‘Reasoning about Knowledge and Probability’, Journal of the ACM, 41:2, 340-367, 1994.Google Scholar
  13. Fitting, M., and R. Mendelsohn, First-Order Modal Logic, Kluwer Academic Publishers, 1999.Google Scholar
  14. Gardenfors, P., ‘Qualitative probability and intensional logic’, Journal of Philosophical Logic, 1975.Google Scholar
  15. Gardenfors, P., and D. Makinson, ‘Nonmonotonic inference based on expectations’, Artificial Intelligence65, 1994.Google Scholar
  16. Heifetz, A., and P. Mongin, ‘Probability logic for type spaces’, Documents de Travail THEMA-Université de Cergy-Pontoise, N 9825, April 1998.Google Scholar
  17. Halpern, J. Y., and M. O. Rabin, ‘A logic to reason about likelihood’, Artificial Intelligence32, 379-405, 1987.Google Scholar
  18. Halpern, J. Y., and D. A. McAllester, ‘Knowledge, likelihood and probability’, Computational Intelligence5, 151-160, 1989.Google Scholar
  19. Hintikka, J., Knowledge and Belief: An introduction to the logic of the two notions, Cornell University Press, Ithaca and London, 1962.Google Scholar
  20. Koslow, A., A Structuralist Theory of Logic, Cambridge University Press, Cambridge, 1992.Google Scholar
  21. Kyburg, H. E. Jr., Probability and the Logic of Rational Belief, Wesleyan University Press, Middletown, 1961.Google Scholar
  22. Kyburg, H. E. Jr., ‘Probabilistic inference and non-monotonic inference’, Uncertainty in Artificial Intelligence, R. D. Schachter, T. S. Evitt, L. N. Kanal J. F. Lemmer (eds.), Elsevier Science (North Holland), 1990.Google Scholar
  23. Kyburg, H. E. Jr., ‘The rule of adjunction and reasonable inference’, Journal of Philosophy, March 1997.Google Scholar
  24. Levi, I., The Enterprise of Knowledge, The MIT Press, Cambridge, Massachusetts, 1980.Google Scholar
  25. Levi, I. For the Sake of the Argument: Ramsey test conditionals, Inductive Inference, and Nonmonotonic reasoning, Cambridge, England: Cambridge University Press, 1996.Google Scholar
  26. Lenzen, W., ‘Recent work in epistemic logic’, Acta Philosophica Fennica30, 1-219, 1978.Google Scholar
  27. Montague, R., ‘Universal grammar’, Theoria36, 373-398, 1970.Google Scholar
  28. Parikh, R., ‘Propositional game logic’, 24th IEEE-FOCS, 195-200, 1983.Google Scholar
  29. Pauli, M., ‘Modeling coalitional power in modal logic’, Proceedings of the Twelfth Amsterdam Colloquium, 1999Google Scholar
  30. Savage, L. J., The foundations of Statistics, Dover, New York, 1972.Google Scholar
  31. Scott, D., ‘Advice in modal logic’, in K. Lambert (ed.) Philosophical Problems in Logic, Dordrecht, Netherlands: Reidel, 143-173, 1970.Google Scholar
  32. Shackle, G. L. S., ‘Expectations in economics’, Cambridge University Press, Cambridge, 1952.Google Scholar
  33. Spohn, W., ‘A general non-probabilistic theory of inductive inference’, in Causation in Decision, Belief Change and Statistics, edited by W. Harper and B. Skyrms, Dordrecht, Netherlands: Reidel, 105-134, 1988.Google Scholar
  34. van Benthem, J., ‘Correspondence theory’, chapter II.4 of the Handbook of Philosophical Logic, vol II, D. Gabbay, F. Guenthner (eds.), Kluwer Academic Publishers, 1984.Google Scholar
  35. von Wright, G. H., An Essay in Modal Logic, Amsterdam, North-Holland, 1951.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Horacio Arló Costa
    • 1
  1. 1.Carnegie Mellon UniversityUSA

Personalised recommendations