Advertisement

Journal of Biomolecular NMR

, Volume 23, Issue 2, pp 103–114 | Cite as

Backbone dynamics of the 8 kDa dynein light chain dimer reveals molecular basis of the protein's functional diversity

  • Jing-Song Fan
  • Qiang Zhang
  • Hidehito Tochio
  • Mingjie Zhang
Article

Abstract

Axonemal and cytoplasmic dyneins share a highly conserved 8 kDa light chain (DLC8) for motor assembly and function. Other than serving as a light chain of dynein complexes, DLC8 has been shown to bind a larger number of proteins with diverse biological functions including cell cycle control, apoptosis, and cell polarity maintenance. Therefore, DLC8 is likely a multifunctional regulatory protein. DLC8 exists as a dimer in solution, and the protein dimer is capable of binding to two target molecules. In this work, the backbone dynamics of DLC8, both in its apo- and target-peptide bound forms, were characterized by 15N NMR relaxation studies. The relaxation data were analyzed using model-free approach. We show that the target peptide-binding region of apo-DLC8 experiences microsecond-to-millisecond time scale conformational fluctuation, suggesting that the target-binding region of the protein is capable of adjusting its shape and size in responding to its various targets. The conformational breathing of the target-binding region of apo-DLC8 was also supported by backbone amide exchange experiment. Such segmental conformational motion of the protein is significantly reduced upon forming a complex with a target peptide. The dynamic properties of DLC8 in solution provide insight into the protein's diverse sequence-dependent target binding.

conformation exchange DLC8/LC8 dynamics dynein relaxation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckwith, S.M., Roghi, C.H., Liu, B. and Ronald Morris, N. (1998) J. Cell. Biol., 143, 1239–1247.Google Scholar
  2. Crepieux, P., Kwon, H., Leclerc, N., Spencer, W., Richard, S., Lin, R. and Hiscott, J. (1997) Mol. Cell. Biol., 17, 7375–7385.Google Scholar
  3. Crivici, A. and Ikura, M. (1995) Annu. Rev. Biophys. Biomol. Struct., 24, 85–116.Google Scholar
  4. Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR, 6, 277–293.Google Scholar
  5. Dick, T., Ray, K., Salz, H.K. and Chia, W. (1996) Mol. Cell. Biol., 16, 1966–1977.Google Scholar
  6. Espindola, F.S., Suter, D.M., Partata, L.B., Cao, T., Wolenski, J.S.Google Scholar
  7. Cheney, R.E., King, S.M. and Mooseker, M.S. (2000) Cell Motil. Cytoskeleton, 47, 269–281.Google Scholar
  8. Fan, J.S., Zhang, Q., Li, M., Tochio, H., Yamazaki, T., Shimizu, M. and Zhang, M. (1998) J. Biol. Chem., 273, 33472–33481.Google Scholar
  9. Fan, J.S., Zhang, Q., Tochio, H., Li, M. and Zhang, M. (2001) J. Mol. Biol., 306, 97–108.Google Scholar
  10. Farrow, N.A., Muhandiram, R., Singer, A.U., Pascal, S.M., Kay, C.M., Gish, G., Shoelson, S.E., Pawson, T., Forman-Kay, J.D. and Kay, L.E. (1994) Biochemistry, 33, 5984–6003.Google Scholar
  11. Feher, V.A. and Cavanagh, J. (1999) Nature, 400, 289–293.Google Scholar
  12. Garrett, D.S., Powers, R., Gronenborn, A.M. and Clore, G.M. (1991) J. Magn. Reson., 95, 214–220.Google Scholar
  13. Gill, S.R., Cleveland, D.W. and Schroer, T.A. (1994) Mol. Biol. Cell, 5, 645–654.Google Scholar
  14. Gryk, M.R., Jardetzky, O., Klig, L.S. and Yanofsky, C. (1996) Protein Sci., 5, 1195–1197.Google Scholar
  15. Harrison, A., Olds-Clarke, P. and King, S.M. (1998) J. Cell. Biol., 140, 1137–1147.Google Scholar
  16. Herzig, R.P., Andersson, U. and Scarpulla, R.C. (2000) J. Cell. Sci., 113, 4263–4273.Google Scholar
  17. Hirokawa, N. (1998) Science, 279, 519–526.Google Scholar
  18. Holzbaur, E.L. and Vallee, R.B. (1994) Annu. Rev. Cell Biol., 10, 339–372.Google Scholar
  19. Hughes, S.M., Vaughan, K.T., Herskovits, J.S. and Vallee, R.B. (1995) J. Cell. Sci., 108, 17–24.Google Scholar
  20. Jacob, Y., Badrane, H., Ceccaldi, P.E. and Tordo, N. (2000) J. Virol., 74, 10217–10222.Google Scholar
  21. Jaffrey, S.R. and Snyder, S.H. (1996) Science, 274, 774–777.Google Scholar
  22. Karki, S. and Holzbaur, E.L. (1995) J. Biol. Chem., 270, 28806–28811.Google Scholar
  23. Kay, L.E., Muhandiram, D.R., Wolf, G., Shoelson, S.E. and Forman-Kay, J.D. (1998) Nat. Struct. Biol., 5, 156–163.Google Scholar
  24. Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972–8979.Google Scholar
  25. King, S.M. (2000) Biochim. Biophys. Acta, 1496, 60–75.Google Scholar
  26. King, S.M., Barbarese, E., Dillman, III, J.F., Patel-King, R.S., Carson, J.H. and Pfister, K.K. (1996a) J. Biol. Chem., 271, 19358–19366.Google Scholar
  27. King, S.M., Dillman, III, J.F., Benashski, S.E., Lye, R.J., Patel-King, R.S. and Pfister, K.K. (1996b) J. Biol. Chem., 271, 32281–32287.Google Scholar
  28. King, S.M. and Patel-King, R.S. (1995a) J. Cell. Sci., 108, 3757–3764.Google Scholar
  29. King, S.M. and Patel-King, R.S. (1995b) J. Biol. Chem., 270, 11445–11452.Google Scholar
  30. King, S.M., Patel-King, R.S., Wilkerson, C.G. and Witman, G.B. (1995) J. Cell. Biol., 131, 399-409.Google Scholar
  31. King, S.M., Wilkerson, C.G. and Witman, G.B. (1991) J. Biol.Chem., 266, 8401–8407.Google Scholar
  32. Kraulis, P.J. (1991) J. Appl. Crystallogr., 24, 946–950.Google Scholar
  33. Kriwacki, R.W., Hengst, L., Tennant, L., Reed, S.I. and Wright, P.E. (1996) Proc. Natl. Acad. Sci. USA, 93, 11504–11509.Google Scholar
  34. Lee, L.K., Rance, M., Chazin, W.J. and Palmer, III, A.G. (1997) J. Biomol. NMR, 9, 287–298.Google Scholar
  35. Liang, J., Jaffrey, S.R., Guo, W., Snyder, S.H. and Clardy, J. (1999) Nat. Struct. Biol., 6, 735–740.Google Scholar
  36. Lipari, G. and Szabo, A. (1982a) J. Am. Chem. Soc., 104, 4546–4559.Google Scholar
  37. Lipari, G. and Szabo, A. (1982b) J. Am. Chem. Soc., 104, 4559–4570.Google Scholar
  38. Lo, K.W., Naisbitt, S., Fan, J.S., Sheng, M. and Zhang, M. (2001) J. Biol. Chem., 276, 14059–14066.Google Scholar
  39. Mandel, A.M., Akke, M. and Palmer, III, A.G. (1995) J. Mol. Biol., 246, 144–163.Google Scholar
  40. Meador, W.E., Means, A.R. and Quiocho, F.A. (1993) Science, 262, 1718–1721.Google Scholar
  41. Merritt, E. and Murphy, M. (1994) Acta. Cryst., D50, 869–873.Google Scholar
  42. Naisbitt, S., Valtschanoff, J., Allison, D.W., Sala, C., Kim, E., Craig, A. M., Weinberg, R.J. and Sheng, M. (2000) J. Neurosci., 20, 4524–4534.Google Scholar
  43. Palmer, III, A.G., Rance, M. and Wright, P.E. (1991) J. Am. Chem. Soc., 113, 4371–4380.Google Scholar
  44. Patel-King, R.S., Benashski, S.E., Harrison, A. and King, S.M. (1997) J. Cell. Biol., 137, 1081–1090. 114Google Scholar
  45. Pazour, G.J., Koutoulis, A., Benashski, S.E., Dickert, B.L., Sheng, H., Patel-King, R.S., King, S.M. and Witman, G.B. (1999) Mol. Biol. Cell, 10, 3507–3520.Google Scholar
  46. Pazour, G.J., Wilkerson, C.G. and Witman, G.B. (1998) J. Cell Biol., 141, 979–992.Google Scholar
  47. Phillis, R., Statton, D., Caruccio, P. and Murphey, R.K. (1996) Development, 122, 2955–2963.Google Scholar
  48. Piperno, G. and Luck, D.J. (1979) J. Biol. Chem., 254, 3084–3090.Google Scholar
  49. Puthalakath, H., Huang, D.C., O'Reilly, L.A., King, S.M. and Strasser, A. (1999) Mol. Cell, 3, 287–296.Google Scholar
  50. Raux, H., Flamand, A. and Blondel, D. (2000) J. Virol., 74, 10212–10216.Google Scholar
  51. Schnorrer, F., Bohmann, K. and Nusslein-Volhard, C. (2000) Nat. Cell. Biol., 2, 185–190.Google Scholar
  52. Tjandra, N., Feller, S.E., Pastor, R.W. and Bax, A. (1995a) J. Am. Chem. Soc., 117, 12562–12566.Google Scholar
  53. Tjandra, N., Kuboniwa, H., Ren, H. and Bax, A. (1995b) Eur. J. Biochem., 230, 1014–1024.Google Scholar
  54. Tochio, H., Hung, F., Li, M., Bredt, D.S. and Zhang, M. (2000) J. Mol. Biol., 295, 225–237.Google Scholar
  55. Tochio, H., Ohki, S., Zhang, Q., Li, M. and Zhang, M. (1998) Nat. Struct. Biol., 5, 965–969.Google Scholar
  56. Vallee, R.B. and Sheetz, M.P. (1996) Science, 271, 1539–1544.Google Scholar
  57. Vaughan, K.T. and Vallee, R.B. (1995) J. Cell Biol., 131, 1507–1516.Google Scholar
  58. Wyss, D.F., Dayie, K.T. and Wagner, G. (1997) Protein Sci., 6, 534–542.Google Scholar
  59. Zhang, M., Li, M., Wang, J.H. and Vogel, H.J. (1994) J. Biol. Chem., 269, 15546–15552.Google Scholar
  60. Zhang, M. and Yuan, T. (1998) Biochem. Cell. Biol., 76, 313–323.Google Scholar
  61. Zidek, L., Novotny, M.V. and Stone, M.J. (1999) Nat. Struct. Biol., 6, 1118–11121.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Jing-Song Fan
    • 1
  • Qiang Zhang
    • 1
  • Hidehito Tochio
    • 1
  • Mingjie Zhang
    • 1
  1. 1.Department of BiochemistryThe Hong Kong University of Science and TechnologyKowloonHong Kong, P.R. China

Personalised recommendations