Pharmaceutical Research

, Volume 3, Issue 4, pp 187–194 | Cite as

The interactions of water with cellulose- and starch-derived pharmaceutical excipients

  • George Zografi
  • Mark J. Kontny


Water associated with polymeric pharmaceutical excipients derived from cellulose and starch can have a profound effect on the properties of the excipient and on the other ingredients making up a solid dosage form. Important questions which need to be addressed include How much water will be sorbed or desorbed at various relative humidities and temperatures? and What is the thermodynamic state of water associated with the solid as a function of moisture content? A critical review of the literature is presented to demonstrate the most likely answers to these questions. It appears that water exists in at least three thermodynamic states in starch, cellulose, and their derivatives: (1) water directly and tightly bound, with a stoichiometry of one water molecule per anhydroglucose unit; (2) water in a relatively unrestricted form, approaching the properties of bulk or pure liquid water; and (3) water in an intermediate state or states, with properties reflecting a much higher level of structure than bulk water but less than that of tightly bound water. Some implications of such behavior for pharmaceutical systems are discussed.

water vapor sorption starch–water interactions cellulose–water interactions polymer–water interactions water–polymer interactions water–excipient interactions excipient –water interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Skaar. Water in Wood, Syracuse University Press, Syracuse, N.Y., 1972.Google Scholar
  2. 2.
    A. M. Scallan. In Transactions of Symposium on Fibre-Water Interactions in Paper-Making, The British Paper and Board Industry Federation, London, 1977, pp. 9–29.Google Scholar
  3. 3.
    L. B. Rockland and G. F. Stewart. Water Activity: Influences on Food Quality, Academic Press, New York, 1981.Google Scholar
  4. 4.
    A. R. Urquart and A. M. Williams. J. Textile Inst. 15:T559–T572 (1924).Google Scholar
  5. 5.
    G. Sposito and R. Prost. Chem. Rev. 82:553–573 (1982).Google Scholar
  6. 6.
    I. D. Kuntz, T. S. Brassfield, G. Law, and G. Purcell. Science 163:1329–1331 (1969).Google Scholar
  7. 7.
    H. B. Lee, M. S. Jhon, and J. D. Andrade. J. Colloid Interf. Sci. 51:225–231 (1975).Google Scholar
  8. 8.
    L. Van Campen, G. L. Amidon, and G. Zografi. J. Pharm. Sci. 72:1381–1393 (1983).Google Scholar
  9. 9.
    J. Honeymoon. Recent Advances in the Chemistry of Cellulose and Starch, Interscience, New York, 1959.Google Scholar
  10. 10.
    G. Zografi, M. J. Kontny, A. Y. S. Yang, and G. S. Brenner. Int. J. Pharm. 18:99–116 (1984).Google Scholar
  11. 11.
    T. Bluhm, Y. Deslandes, R. H. Marchessault, and P. R. Sundararajan. In S. P. Rowland (ed.), Water in Polymers, ACS Symposium Series 127, American Chemical Society, Washington, D.C., 1980, pp. 253–272.Google Scholar
  12. 12.
    E. H. Immergut. In B. L. Browning (ed.), The Chemistry of Wood, Robert E. Krieger, Huntington, N.Y., 1975.Google Scholar
  13. 13.
    A. J. Stamm. Wood and Cellulose Science, Ronald Press, New York, 1964.Google Scholar
  14. 14.
    Y. Nakai, E. Fukuoka, S. Nakajima, and J. Hasegawa. Chem. Pharm. Bull. 25:96–101 (1977).Google Scholar
  15. 15.
    A. J. Hailwood and S. Horrobin. Trans. Faraday Soc. 42B:84–102 (1946).Google Scholar
  16. 16.
    C. Van den Berg, F. S. Kaper, J. A. G. Weldring, and I. Wolters. J. Fd. Technol. 10:589–602 (1975).Google Scholar
  17. 17.
    C. Van den Berg. In L. B. Rockland and G. F. Stewart (eds.), Water Activity: Influences on Food Quality, Academic Press, New York, 1981, pp. 1–61.Google Scholar
  18. 18.
    J. W. Rowen and R. Simka. J. Phys. Chem. 53:921–930 (1949).Google Scholar
  19. 19.
    N. W. Taylor, J. E. Cluskey, and F. R. Senti. J. Phys. Chem. 65:1810–1816 (1961).Google Scholar
  20. 20.
    P. J. Flory. Principles of Polymer Chemistry, Cornell University Press, Ithaca, N.Y., 1953.Google Scholar
  21. 21.
    A. Venkateswaren. Chem. Rev. 70:619–637 (1970).Google Scholar
  22. 22.
    C. Van den Berg. Vapor Sorption Equilibria and Other Water-Starch Interactions; A Physicochemical Approach, Ph.D. thesis, Agricultural University of Wageningen, Wageningen, 1981, pp. 106–110.Google Scholar
  23. 23.
    A. B. Rizzuto, A. C. Chen, and M. F. Veiga. Pharm. Techol. 8 (9):32–39 (1984).Google Scholar
  24. 24.
    S. E. Tabibi and R. G. Hollenbeck. Int. J. Pharm. 18:169–183 (1984).Google Scholar
  25. 25.
    G. Zografi. In D. D. Breimer and P. Speiser (eds.), Topics in Pharmaceutical Sciences, Elsevier, Amsterdam, 1981, pp. 427–441.Google Scholar
  26. 26.
    R. G. Hollenbeck, G. E. Peck, and D. O. Kildsig. J. Pharm. Sci. 67:1599–1606 (1978).Google Scholar
  27. 27.
    J. L. Morrison and M. A. Dzieciuk. Can. J. Chem. 37:1379–1390 (1959).Google Scholar
  28. 28.
    M. Wahba. J. Phys. Colloid Chem. 54:1148–1160 (1950).Google Scholar
  29. 29.
    D. E. Wurster, G. E. Peck, and D. O. Kildsig. Starch 36:294–299 (1984).Google Scholar
  30. 30.
    J. A. Rupley, P.-H. Yang, and G. Tollin. In S. P. Rowland (ed.), Water in Polymers, ACS Symposium 127, American Chemical Society, Washington, D.C., 1980, pp. 111–132.Google Scholar
  31. 31.
    N. Nagashima, and E.-I. Suzuki. Appl. Spectrosc. Rev. 20:1–53 (1984).Google Scholar
  32. 32.
    R. B. Duckworth. J. Fd. Technol. 6:317–327 (1971).Google Scholar
  33. 33.
    W. A. Sisson. In Avicel, Microcrystalline Cellulose, Its Production, Properties and Applications, FMC Corp., Philadelphia, 1966.Google Scholar
  34. 34.
    F. Franks. In C. A. Finch (ed.), Chemistry and Technology of Water-Soluble Polymers, Plenum Press, New York, 1983, pp. 157–178.Google Scholar
  35. 35.
    R. Mathur-DeVré. Prog. Biophys. Mol. Biol. 35:103–134 (1979).Google Scholar
  36. 36.
    B. Halle, and H. Wennerström. J. Chem. Phys. 75:1928–1943 (1981).Google Scholar
  37. 37.
    M. J. Kontny. In Water Vapor Sorption Studies on Solid Surfaces, Ph.D. thesis, University of Wisconsin-Madison, 1985, pp. 156–178.Google Scholar
  38. 38.
    H. J. Hennig and H. Lechert. J. Colloid Interf. Sci. 62:199–204 (1977).Google Scholar
  39. 39.
    J. Mousseri, M. P. Steinberg, A. I. Nelson, and L. S. Wei. J. Food Sci. 39:114–116 (1974).Google Scholar
  40. 40.
    M. J. Tait, S. Ablett, and F. W. Wood. J. Colloid Interf. Sci. 41:594–603 (1972).Google Scholar
  41. 41.
    M. J. Tait, S. Ablett, and F. Franks. In H. H. G. Jellinek (ed.), Water Structure at the Water-Polymer Interface, Plenum Press, New York, 1972, pp. 29–38.Google Scholar
  42. 42.
    J. E. Carles and A. M. Scallan. J. Appl. Polym. Sci. 17:1855–1865 (1973).Google Scholar
  43. 43.
    T. C. Wong and T. T. Ang. J. Phys. Chem. 89:4047–4051 (1985).Google Scholar
  44. 44.
    E. Hsi, G. J. Voigt, and R. G. Bryant. J. Colloid Interf. Sci. 70:338–345 (1979).Google Scholar
  45. 45.
    M. F. Froix and R. Nelson. Macromolecules 8:726–730 (1975).Google Scholar
  46. 46.
    J. Blackwell, A. Sarko, and R. H. Marchessault. J. Mol. Biol. 42:379–383 (1969).Google Scholar
  47. 47.
    B. P. Fish. In Fundamental Aspects of the Dehydration of Foodstuffs, Soc. Chem. Ind. (SCI), London, 1958, pp. 143–157.Google Scholar
  48. 48.
    R. B. Duckworth and G. M. Smith. In J. M. Leitch and D. D. Rhodes (eds.), Recent Advances in Food Science, Vol. 3, Butterworths, London, 1962, pp. 230–238.Google Scholar
  49. 49.
    D. C. Monkhouse and L. Van Campen. Drug Dev. Ind. Pharm. 10:1175–1276 (1984).Google Scholar
  50. 50.
    N. A. Armstrong and R. V. Griffiths. Pharm. Acta Helv. 45:692–700 (1970).Google Scholar
  51. 51.
    R. Huettenrauch and J. Jacob. Die Pharm. 32:241–242 (1977).Google Scholar
  52. 52.
    S. E. Tabibi. In Water Vapor Adsorption by Compressible Sugar and Its Effect on Powder Compressibility, Ph.D. thesis, University of Maryland, College Park, 1982.Google Scholar
  53. 53.
    A. Mitrevej and R. G. Hollenbeck. Pharm. Technol. 6 (10):48–54 (1982).Google Scholar
  54. 54.
    R. E. Gordon, G. E. Peck and D. O. Kildsig. Drug Dev. Ind. Pharm. 10:833–860 (1984).Google Scholar
  55. 55.
    J. C. Callahan, G. W. Cleary, M. Elefant, I. Kaplan, T. Kensler, and R. A. Nash. Drug Dev. Ind. Pharm. 8:355–369 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • George Zografi
    • 1
  • Mark J. Kontny
    • 1
  1. 1.School of PharmacyUniversity of Wisconsin—MadisonMadison

Personalised recommendations