Advertisement

Journal of Biomolecular NMR

, Volume 23, Issue 2, pp 127–137 | Cite as

Evaluation of uncertainty in alignment tensors obtained from dipolar couplings

  • Markus Zweckstetter
  • Ad Bax
Article

Abstract

Residual dipolar couplings and their corresponding alignment tensors are useful for structural analysis of macromolecules. The error in an alignment tensor, derived from residual dipolar couplings on the basis of a known structure, is determined not only by the accuracy of the measured couplings but also by the uncertainty in the structure (structural noise). This dependence is evaluated quantitatively on the basis of simulated structures using Monte-Carlo type analyses. When large numbers of dipolar couplings are available, structural noise is found to result in a systematic underestimate of the magnitude of the alignment tensor. Particularly in cases where only few dipolar couplings are available, structural noise can cause significant errors in best-fitted alignment tensor values, making determination of the relative orientation of small fragments and evaluation of local backbone mobility from dipolar couplings difficult. An example for the protein ubiquitin demonstrates the inherent limitations in characterizing motions on the basis of local alignment tensor magnitudes.

alignment tensor backbone dynamics dipolar coupling error analysis liquid crystal order matrix protein structure determination ubiquitin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almond, A. and Duus, J.O. (2001) J. Biomol. NMR, 20, 351–363.Google Scholar
  2. Bewley, C.A. and Clore, G.M. (2000) J. Am. Chem. Soc., 122, 6009–6016.Google Scholar
  3. Bothner-By, A.A. (1996) in Encyclopedia of Nuclear Magnetic Resonance, Grant, D.M. and Harris, R.K. (Eds.), Wiley, Chichester, pp. 2932–2938.Google Scholar
  4. Clore, G.M. (2000) Proc. Natl. Acad. Sci. USA, 97, 9021–9025.Google Scholar
  5. Clore, G.M. and Garrett, D.S. (1999) J. Am. Chem. Soc., 121, 9008–9012.Google Scholar
  6. Cornilescu, G., Marquardt, J.L., Ottiger, M. and Bax, A. (1998) J. Am. Chem. Soc., 120, 6836–6837.Google Scholar
  7. Delaglio, F., Kontaxis, G. and Bax, A. (2000) J. Am. Chem. Soc., 122, 2142–2143.Google Scholar
  8. Eisenhaber, F., Lijnzaad, P., Argos, P., Sander, C. and Scharf, M. (1995) J. Comput. Chem., 16, 273–284.Google Scholar
  9. Emsley, J.W. (1996) in Encyclopedia of Nuclear Magnetic Resonance, Grant, D.M. and Harris, R.K. (Eds.), Wiley, Chichester, pp. 2788–2799.Google Scholar
  10. Fischer, M.W.F., Losonczi, J.A., Weaver, J.L. and Prestegard, J.H. (1999) Biochemistry, 38, 9013–9022.Google Scholar
  11. Gayathri, C., Bothnerby, A.A., Vanzijl, P.C.M. and Maclean, C. (1982) Chem. Phys. Lett., v87, 192–196.Google Scholar
  12. Goto, N.K., Skrynnikov, N.R., Dahlquist, F.W. and Kay, L.E. (2001) J. Mol. Biol., 308, 745–764.Google Scholar
  13. Hus, J.C., Marion, D. and Blackledge, M. (2000) J. Mol. Biol., 298, 927–936.Google Scholar
  14. Losonczi, J.A., Andrec, M., Fischer, M.W.F. and Prestegard, J.H. (1999) J. Magn. Reson., 138, 334–342.Google Scholar
  15. Meiler, J., Prompers, J.J., Peti, W., Griesinger, C. and Bruschweiler, R. (2001) J. Am. Chem. Soc., 123, 6098–6107.Google Scholar
  16. Ottiger, M. and Bax, A. (1998) J. Am. Chem. Soc., 120, 12334–12341.Google Scholar
  17. Sass, H.J., Musco, G., Stahl, S.J., Wingfield, P.T. and Grzesiek, S. (2000) J. Biomol. NMR, 18, 303–309.Google Scholar
  18. Sass, J., Cordier, F., Hoffmann, A., Cousin, A., Omichinski, J.G., Lowen, H. and Grzesiek, S. (1999) J. Am. Chem. Soc., 121, 2047–2055.Google Scholar
  19. Saupe, A. and Englert, G. (1963) Phys. Rev. Lett., 11, 462–464.Google Scholar
  20. Tjandra, N. and Bax, A. (1997) Science, 278, 1111–1114.Google Scholar
  21. Tjandra, N., Feller, S.E., Pastor, R.W. and Bax, A. (1995) J. Am. Chem. Soc., 117, 12562–12566.Google Scholar
  22. Tjandra, N., Grzesiek, S. and Bax, A. (1996) J. Am. Chem. Soc., 118, 6264–6272.Google Scholar
  23. Tjandra, N., Omichinski, J.G., Gronenborn, A.M., Clore, G.M. and Bax, A. (1997) Nat. Struct. Biol., 4, 732–738.Google Scholar
  24. Tolman, J.R., Al-Hashimi, H.M., Kay, L.E. and Prestegard, J.H. (2001) J. Am. Chem. Soc., 123, 1416–1424.Google Scholar
  25. Tolman, J.R., Flanagan, J.M., Kennedy, M.A. and Prestegard, J.H. (1995) Proc. Natl. Acad. Sci. USA, 92, 9279–9283.Google Scholar
  26. Tycko, R., Blanco, F.J. and Ishii, Y. (2000) J. Am. Chem. Soc., 122, 9340–9341.Google Scholar
  27. Vermeulen, A., Zhou, H.J. and Pardi, A. (2000) J. Am. Chem. Soc., 122, 9638–9647.Google Scholar
  28. Vijay-Kumar, S., Bugg, C.E. and Cook, W.J. (1987) J. Mol. Biol., 194, 531–544.Google Scholar
  29. Wang, L.C., Pang, Y.X., Holder, T., Brender, J.R., Kurochkin, A.V. and Zuiderweg, E.R.P. (2001) Proc. Natl. Acad. Sci. USA, 98, 7684–7689.Google Scholar
  30. Zweckstetter, M. and Bax, A. (2000) J. Am. Chem. Soc., 122, 3791–3792.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Laboratory of Chemical PhysicsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaU.S.A
  2. 2.Max-Planck-Institute for Biophysical ChemistryGöttingenGermany

Personalised recommendations