Differential Equations

, Volume 38, Issue 4, pp 502–509 | Cite as

Group Classification of Nonlinear Evolutionary Equations: II. Invariance Under Solvable Groups of Local Transformations

  • A. A. Abramenko
  • V. I. Lagno
  • A. M. Samoilenko

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Lagno, V.I. and Samoilenko, A.M., Differents. Uravn., 2002, vol. 38, no.3, pp. 365-372.Google Scholar
  2. 2.
    Barut, A. and Ron?ka, R., Teoriya predstavlenii grupp i ee prilozheniya (Theory of Group Representations and Its Applications), Moscow, 1980, vol. 1.Google Scholar
  3. 3.
    Goto, M. and Grosshans, F., Poluprostye algebry Li (Semisimple Lie Algebras), Moscow, 1981.Google Scholar
  4. 4.
    Mubarakzyanov, G.M., Izv. Vyssh. Uchebn. Zaved. Matematika, 1963, no. 1(32), pp. 114-123.Google Scholar
  5. 5.
    Mubarakzyanov, G.M., Izv. Vyssh. Uchebn. Zaved. Matematika, 1963, no. 3(34), pp. 99-105.Google Scholar
  6. 6.
    Turkowski, P., J. Math. Phys., 1990, vol. 31, pp. 1344-1349.Google Scholar
  7. 7.
    Ovsyannikov, L.V., Gruppovoi analiz differentsial'nykh uravnenii (Group Analysis of Differential Equations), Moscow, 1978.Google Scholar
  8. 8.
    Akhatov, I.Sh., Gazizov, R.K., and Ibragimov, N.Kh., Dokl. Akad. Nauk SSSR, 1987, vol. 293, no.5, pp. 1033-1035.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • A. A. Abramenko
    • 1
    • 2
  • V. I. Lagno
    • 1
    • 2
  • A. M. Samoilenko
    • 1
    • 2
  1. 1.Poltava State Pedagogical UniversityPoltavaUkraine
  2. 2.Institute for Mathematics, National Academy of SciencesKievUkraine

Personalised recommendations