Advertisement

Plasmas and Polymers

, Volume 7, Issue 2, pp 171–183 | Cite as

Micro-Scale Cell Patterning on Nonfouling Plasma Polymerized Tetraglyme Coatings by Protein Microcontact Printing

  • Y. Vickie Pan
  • Todd C. McDevitt
  • Tae Kyun Kim
  • Deborah Leach-Scampavia
  • Patrick S. Stayton
  • Denice D. Denton
  • Buddy D. Ratner
Article

Abstract

Nonfouling thin films were prepared by the plasma deposition of tetraethylene glycol dimethyl ether (pp4G) on fluorinated ethylene propylene polymer (FEP) and glass substrates. Ordered cell patterns were created on these surfaces by microcontact printing of proteins. Pp4G was found to be stable in aqueous environments and resistant to an ethanol sterilization procedure, as verified by surface analysis. Pp4G also reduced nonspecific protein adsorption by more than 65-fold before and after sterilization. Despite the low adsorption of proteins to pp4G in solution, protein microcontact printing was achieved and we were able to print laminin, an adhesive extracellular matrix protein, from an elastomeric stamp onto pp4G. The printed laminin supported the attachment and spreading of cardiomyocytes and the nonprinted pp4G regions remained cell repulsive in culture conditions. Microscale patterns of cardiomyocytes were maintained on printed pp4G for more than 7 days. This cell patterning process should be viable for other cell types. The potential applications include tissue engineering and microdevices for biosensor, diagnostic, and pharmacological applications.

Nonfouling plasma polymerization cell patterning protein microcontact printing surface analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    S. B. Carter, Exp. Cell. Res. 48, 189 (1967).Google Scholar
  2. 2.
    S. B. Carter, Nature 213, 256 (1967).Google Scholar
  3. 3.
    S. B. Carter, Nature 225, 858 (1970).Google Scholar
  4. 4.
    A. Folch and M. Toner, Ann. Rev. Biomed. Eng. 2, 227 (2000).Google Scholar
  5. 5.
    L. E. Donald and A. H. Jeffrey, Ann. Rev. Mater. Sci. 26, 365 (1996).Google Scholar
  6. 6.
    S. Zhang, G. Wright, and Y. Yang, Biosens. Bioelectron. 15, 273 (2000).Google Scholar
  7. 7.
    Y. V. Pan, Y. Hanein, D. Leach-Scampavia, K. F. Bohringer, B. D. Ratner, and D. D. Denton, A precise technology for controlling protein adsorption and cell adhesion in bioMEMS. In IEEE MEMS Technical Digest, 435 (2001).Google Scholar
  8. 8.
    Y. V. Pan, Y. Hanein, D. Leach-Scampavia, K. F. Bohringer, D. D. Denton, and B. D. Ratner, Micro-scale cell patterning on a nonfouling surface with micro-device applications. Biomaterials (2002)(submitted).Google Scholar
  9. 9.
    Y. Hanein, Y. V. Pan, B. D. Ratner, D. D. Denton, and K. F. Bohringer, Micromaching of non-fouling coatings for bio-MEMS applications. Sensors and Actuators B 81, 49–54 (2001).Google Scholar
  10. 10.
    H. Lu, J. Homola, Y. V. Pan, B. D. Ratner, C. T. Campbell, and S. S. Yee, Surface functionalization for self-referencing surface plasmon resonance biosensors by RF-plasma-deposited thin films and self-assembled monolayers. Transactions of the Sixth World Biomaterials Congress, Society for Biomaterials, 151 (2000).Google Scholar
  11. 11.
    M. N. Mar, B. D. Ratner, and S. S. Yee, Sensors Actuators B, 54, 125 (1999).Google Scholar
  12. 12.
    C. D. James, R. C. Davis, L. Kam, H. G. Craighead, M. Isaacson, J. N. Turner, and W. Shain, Langmuir 14, 741 (1998).Google Scholar
  13. 13.
    A. Bernard, E. Delamarche, H. Schmid, B. Michel, H. R. Bosshard, and H. Biebuyck, Langmuir 14, 2225 (1998).Google Scholar
  14. 14.
    D. W. Branch, J. M. Corey, J. A. Weyhenmeyer, G. J. Brewer, and B. C. Wheeler, Med. Biol. Eng. Comput. 36, 135 (1998).Google Scholar
  15. 15.
    C. D. James, R. Davis, M. Meyer, A. Turner, S. Turner, G. Withers, L. Kam, G. Banker, H. Craighead, M. Issacson, J. Turner, and W. Shain, IEEE Trans. Biomed. Eng. 47, 17 (2000).Google Scholar
  16. 16.
    A. S. Blawas and W. M. Reichert. Biomaterials 19, 595 (1998).Google Scholar
  17. 17.
    G. P. Lopez, B. D. Ratner, C. D. Tidwell, C. L. Haycox, R. J. Rapoza and T. A. Horbett, J. Biomed. Mater. Res. 26, 415 (1992).Google Scholar
  18. 18.
    J. M. Harris, ed., Poly(ethylene glycol) Chemistry, Plenum, New York (1992).Google Scholar
  19. 19.
    F. E. Baily, Jr., and R. W. Callard, J. Appl. Polym. Sci. 1, 56 (1959).Google Scholar
  20. 20.
    N. B. Graham, N. E. Nwachuku, and D. J. Walsh, Polymer 23, 1345 (1982).Google Scholar
  21. 21.
    J. D. Andrade, V. Hlady, and S.-I. Jeon, Hydrophilic Polymers, Performance with Environmental Acceptance, J. E. Glass, ed., American Chemical Society Advances in Chemistry Series 248, (1996).Google Scholar
  22. 22.
    E. Johnston, Surface and biological properties of biofouling-resistant, poly(ethylene oxide)-like Plasma Deposited Films, Ph.D. thesis, University of Washington, Seattle, Washington (1997).Google Scholar
  23. 23.
    K. L. Prime and G. M. Whitesides, Science 252, 1164 (1991).Google Scholar
  24. 24.
    K. L. Prime and G. M. Whitesides, J. Am. Chem. Soc. 115, 10714 (1993).Google Scholar
  25. 25.
    E. E. Johnston, B. D. Ratner, and J. D. Breyer, Plasma Processing of Polymers, R. d'Agostino, P. Favia, and F. Fracassi, ed., NATO Science Series E: Applied Sciences 346 (1997).Google Scholar
  26. 26.
    D. Beyer, W. Knoll, H. Ringsdorf, J.-H. Wang, R. B. Timmons, and P. Sluka, J. Biomed. Mater. Res. 36, 181 (1997).Google Scholar
  27. 27.
    Y. J. Wu, R. B. Timmons, J. S. Jen, and F. Z. Molock, Coll. Surf. B 18, 235 (2000).Google Scholar
  28. 28.
    K. R. Kamath, M. J. Danilich, R. E. Marchant, and K. Park, J. Biomater. Sci. Polymer Edn. 7, 977 (1996).Google Scholar
  29. 29.
    T. A. Horbett, Techniques of Biocompatibility Testing, D. F. Williams, ed., CRC Press, Boca Raton, Florida (1986).Google Scholar
  30. 30.
    T. C. McDevitt, J. C. Angello, M. L. Whitney, H. Reinecke, S. D. Hauschka, C. E. Murry, and P. S. Stayton, In vitro generation of differentiated cardiac myofibers on micropatterned laminin surfaces, J. Biomed. Mater. Res. 60, 472 (2002).Google Scholar
  31. 31.
    R. S. Kane, S. Takayama, E. Ostuni, D. E. Ingber, and G. M. Whitesides, Biomaterials 20, 2363 (1999).Google Scholar
  32. 32.
    K. Iwaki, V. P. Sukhatme, H. E. Shubeita, and K. R. Chien, J. Biol. Chem. 265, 13809 (1990).Google Scholar
  33. 33.
    H. Reinecke, M. Zhang, T. Bartosek, and C. E. Murry, Circulation 100, 193 (1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Y. Vickie Pan
    • 1
  • Todd C. McDevitt
    • 1
  • Tae Kyun Kim
    • 2
  • Deborah Leach-Scampavia
    • 3
  • Patrick S. Stayton
    • 1
  • Denice D. Denton
    • 4
  • Buddy D. Ratner
    • 1
    • 2
  1. 1.Department of BioengineeringUniversity of WashingtonSeattle
  2. 2.Department of Chemical EngineeringUniversity of WashingtonSeattle
  3. 3.Surface Analysis Recharge CenterUniversity of WashingtonSeattle
  4. 4.Department of Electrical EngineeringUniversity of WashingtonSeattle

Personalised recommendations