Advertisement

Pharmaceutical Research

, Volume 12, Issue 1, pp 2–11 | Cite as

Stability of Protein Formulations: Investigation of Surfactant Effects by a Novel EPR Spectroscopic Technique

  • Narendra B. Bam
  • Theodore W. Randolph
  • Jeffrey L. Cleland
Article

Abstract

Surfactants are known to stabilize proteins and are often employed as additives in protein formulations. We have developed a method to study the interaction of these formulation additives with proteins by using the partitioning behavior of a spin label. In protein-free formulations, 16-doxyl stearic acid partitions into micelles above the critical micelle concentration (CMC) of the surfactant and gives rise to composite electron paramagnetic resonance (EPR) spectra composed of spectra from “free” label and “rotationally hindered” label. We compute the fraction of micelle-associated label by factor analysis and generate a label partition curve. When protein is added to the formulation, surfactant-protein aggregates form at concentrations below the surfactant's CMC. Partitioning of the label into these aggregates causes the EPR spectrum to reflect hindered rotation of the label at lower surfactant concentrations than in the protein-free solutions. A simple model of label partitioning shows that these partitioning shifts can be correlated to the surfactant:protein binding stoichiometry. We have studied the interactions of various non-ionic surfactants like Brij and Tween with recombinant human growth hormone and recombinant human interferon-γ and obtained corresponding binding stoichiometries. These binding stoichiometries match those obtained by other techniques. This technique offers a new method for estimating the protein:surfactant binding stoichiometries.

protein stability formulation protein–surfactant interaction label partitioning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Manning, M. C., Patel K., and R. T. Borchardt, “Stability of protein pharmaceuticals”, Pharmaceutical Research, 6(11), 903–918, 1989.Google Scholar
  2. 2.
    Chawla, A. S., Hinberg, I., Blais, P., and D. Johnson, “Aggregation of insulin, containing surfactants, in contact with different materials”, Diabetes, 34, 420–424, 1985.Google Scholar
  3. 3.
    Loughheed, W. D., Albisser, A. M., Martindale H. M., Chow, J. C., and J. R. Clement, “Physical stability of insulin formulations”, Diabetes, 32, 424–432, 1983.Google Scholar
  4. 4.
    Twardowski, Z. J., Nolph, K. D., McGray, T. J., and H. L. Moore, “Nature of insulin binding to plastic bags”, Am. J. Hosp. Pharm., 40, 579–581, 1983.Google Scholar
  5. 5.
    Prakash, V., Nandi, P. K., and B. Jirgensons, “Effect of sodium dodecyl sulfate, acid, alkali, urea and guanidine hydrochloride on the circular dichroism of sesamum indicum 1”, Int. J. Peptide Protein Res., 15, 305–313, 1980.Google Scholar
  6. 6.
    Jirgensons, B., “Factors determining the reconstructive denaturation of proteins in sodium dodecyl sulfate solutions. Further circular dichroism studies on structure reorganization of seven proteins”, J. Protein Chem., 1, 71–84, 1982.Google Scholar
  7. 7.
    Jirgensons, B., “Circular dichroism on reconstructive denaturation of proteins by sodium dodecyl sulfate in neutral and acid solutions”, Macromol. Chem. Rapid Commum., 2, 213–217, 1981.Google Scholar
  8. 8.
    Shih, F. F., and A. D. Kalmar, “SDS-catalyzed deamidation of oilseed proteins”, J. Agr. Food Chem., 35, 672–675, 1987.Google Scholar
  9. 9.
    Fukushima, K., Murata, Y., Nishikido, N., Sugihara, G., and M. Tanaka, “The binding of sodium dodecyl sulfate to lysozyme in aqueous solutions”, Bull. Chem. Soc. Jap., 54, 3122–3127, 1981.Google Scholar
  10. 10.
    Snape, T. J., “Assuring the quality of plasma products”, Polypeptide and protein drugs: production, characterization and formulation, R. C. Hider and D. Barlow, Eds., 181–188, Ellis Horwood, New York, 1991.Google Scholar
  11. 11.
    Schwuger, M. J., and F. G. Bartnik, “Interaction of anioinic surfactants with proteins, enzymes and membranes”, Anionic Surfactants, Surfactant Sci. Ser., Vol 10, 1–52, Gloxhuber. C., Ed., Marcel Dekker, New York, 1980.Google Scholar
  12. 12.
    Greener, J., Constable, B. A., and Bale, M. M., “Interaction of anionic surfactants with gelatin: viscosity effects”, Macromolecules, 20, 2490–2498, 1987.Google Scholar
  13. 13.
    Steinhardt, J., Scott, J. R., and K. S. Birdi, “Differences in the solubilizing effectiveness of the soium dodecyl sulfate complexes of various proteins”, Biochemistry, 16, 718–725, 1977.Google Scholar
  14. 14.
    Steinhardt, J. and J. A. Reynolds, Multiple equilibria in proteins, Academic Press, New York, 239–302, 1969.Google Scholar
  15. 15.
    Tanford. C., The hydrophobic effect: Formation of micelles and biological membranes, 2nd ed., Marcell Dekker, New York, 1–15, 1980.Google Scholar
  16. 16.
    Makino, S., “Interactions of proteins with amphipathic substances”, Advances in Biophysics, Vol. 12, 131–184, Kotani, M., Ed., Japanese Science Society Press, Tokyo, and University Park Press, Baltimore, 1979.Google Scholar
  17. 17.
    Robb, I. D., “Polymer-surfactant interactions”, Anionic surfactants, Physical chemistry of surfactant action., Surfactant Sci. Ser. Vol. 11, 109–142, Lucassen-Reyenders, Ed., Marcell-Dekker, New York, 1981.Google Scholar
  18. 18.
    Jones, M. N., “Physicochemical studies on the interactions between surfactants and globular proteins”, Commun. Jorn. Com. Esp. Deterg., 14, 117–131, 1983.Google Scholar
  19. 19.
    Rendall, H. M., “Use of a surfactant selective electrode in the measurement of the binding of anionic surfactants to bovine serum albumin”, J. Chem. Soc. Faraday Trans., 1,72, 481–484, 1976.Google Scholar
  20. 20.
    Kreschek, G. C., and I. Constantinidis, “Ion-selective electrodes for octyl and decyl sulfate surfactants”, Anal. Chem., 56, 152–156, 1984.Google Scholar
  21. 21.
    Hayakawa, K., Ayub, A. L., and Kwak, J. C. T., “The application of surfactant selective electrodes to the study of surfactant adsorption in colloidal suspension”, Colloids Surf., 4, 389–397, 1982.Google Scholar
  22. 22.
    Cutler. S. G., Meares, P. and Hall, D. J., “Ionic activities in sodium dodecyl sulfate from electromotive force measurements”, J. Chem. Soc. Faraday Trans., 1,74, 1758–1767, 1978.Google Scholar
  23. 23.
    Oakes, J., “Protein-surfactant interactions-Nuclear magnetic resonance and binding isotherm studies of interactions between bovine serum albumin and sodium dodecyl sulfate”, J. Chem. Soc. Faraday Trans., 1,70, 2200–2209, 1974.Google Scholar
  24. 24.
    Smith, M. L., and N. Muller, “Fluorine chemical shifts in complexes of sodium trifluoralkylsulfates with reduced proteins”, Biochem. Biophys. Res. Commun., 62(3), 723–728, 1975.Google Scholar
  25. 25.
    Tsujii, K. and T. Takagi, “Proton magnetic resonance studies of the binding of an anionic surfactant with a benzene ring to a protein polypeptide with special reference to SDS-polyacrylamide gel electrophoresis”, J. Biochem., 77, 511–519, 1975.Google Scholar
  26. 26.
    Nishikido, N., Takahara, T., Kobayashi, H., and Tanaka, M., “Interaction between hydrophilic proteins and nonionic detergents by surface tension measurements”, Bull. Chem. Soc. Jpn., 55, 3085–3088, 1982.Google Scholar
  27. 27.
    Kaneshina, S., Tanaka, M., and Kondo, T., “Interaction of bovine serum albumin with detergent cations”, Bull. Chem. Soc. Jpn., 46, 2735–2738, 1973.Google Scholar
  28. 28.
    Bohnert, J. L., and T. A. Horbett, “Changes in adsorbed fibrinogen and albumin interactions with polymers indicated by decreases in detergent elutability”, J. Colloid Interface Sci., 111, 363–367, 1986.Google Scholar
  29. 29.
    Piatigorsky, J., Horwitz, J., and R. T. Simpson, “Partial dissocitaion and renaturation of embryonic chick d-crystallin. Characterization by ultracentrifugation and circular dichroism”, Biochim. Biophys. Acta, 490, 279–289, 1977.Google Scholar
  30. 30.
    Tandon, S., and P. M. Horowitz, “Detergent-assisted refolding of guanidinium chloride-denatured rhodanese”, J. Biol. Chem., 262, 4486–4491, 1987.Google Scholar
  31. 31.
    Moore, J. A., Wilking, H., and Daugherty, A. L, Delivery Systems for Peptide drugs, Davis, S. S., Illum, L., and Tomlinson, E., Eds., Plenum Press, New York, 317–329, 1986.Google Scholar
  32. 32.
    Sukow, W. W., Sandberg, H. E., Lewis, E. A., Eatough, D. J., and Hansen, L. D., “Binding of the Triton X series of nonionic surfactants to bovine serum albumin”, Biochemistry, 19, 912–917, 1980.Google Scholar
  33. 33.
    Coke, M., Wilde, P. J., Russell, E. J., and D. C. Clark, “The influence of surface composition and molecular diffusion on the stability of foams formed from protein/surfactant mixtures”, J. Colloid Interface Sci., 138, 489–504, 1990.Google Scholar
  34. 34.
    Daughterty, A. L., Liggitt, H. D., McCabe, J. G., Moore, J. A., and J. S. Patton, “Absorption of recombinant methionyl-human growth hormone from rat nasal mucosa”, Int. J. Pharm., 45, 197–206, 1988.Google Scholar
  35. 35.
    Cleland, J. L. and D. I. C. Wang, Biocatalyst design for stability and specificity, M. E. Himmel and G. Georgiou, Eds., ACS symposium series 516, 151–156, 1993.Google Scholar
  36. 36.
    Cleland, J. L. and T. W. Randolph, “Mechanism of polyethylene glycol interaction with the molten globule folding intermediate of bovine carbonic anhydrase B”, J. Biol. Chem., 267(5), 3147–3153, 1992.Google Scholar
  37. 37.
    Carlier, C., “EPR spectroscopic studies of free radical reactions and molecular interactions in supercritical fluids”, Ph.D. Thesis, Dept. of Chemical Engr., Yale University, 1994.Google Scholar
  38. 38.
    Schneider, D. J., and J. H. Freed, “Calculating slow motional magnetic resonance spectra: A users guide”, Biological Magnetic Resonance, Vol. 8, Berliner, L. J., and Reuben, J., Eds., Plenum, 1–76, 1989.Google Scholar
  39. 39.
    Carlier, C., and T. W. Randolph, “Dense-gas solvent-solute clusters at near-infinite dilution: EPR spectroscopic evidence”, AIChE Journal, 39, 876–884, 1993.Google Scholar
  40. 40.
    Malinowski, E., “Theory of error in factor analysis”, Analytical Chemistry, 49(4), 606–617, 1977.Google Scholar
  41. 41.
    Press, W. H, Teukolsky, S. A, Vetterling, W. T. and Flannery, B. P., Numerical Recipes in Fortran: The art of scientific computing, Cambridge University Press, 1992.Google Scholar
  42. 42.
    Nagarajan, R., “Thermodynamics of nonioinic polymer-micelle association”, Colloids Surf., 13, 1–17, 1985.Google Scholar
  43. 43.
    Houghton, R. and Chrambach, A., “Studies on the reaction between human growth hormone and oleic acid using polyacrylamide gel electrophoresis”, Arch. Biochem. Biophys. 197, 163–169, 1979.Google Scholar
  44. 44.
    Lewis, U. J., Cheever, E. V., and Seavey, B. K., “Influence of fatty acids on the electrophoretic behavior of proteins with special reference to pituitary hormones and thyroglobulin”, J. Biol. Chem. 243, 260–267, 1968.Google Scholar
  45. 45.
    Von Heijne, G., “On the hydrophobic nature of signal sequences”, Eur J. Biochem., 116, 419–422, 1981.Google Scholar
  46. 46.
    Manavalan, P., and Ponnuswamy, P. K., “Hydrophobic character of amino acid residues in globular proteins”, Nature, 275, 673–674, 1978.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Narendra B. Bam
    • 1
  • Theodore W. Randolph
    • 2
  • Jeffrey L. Cleland
    • 3
  1. 1.Department of Chemical EngineeringYale UniversityNew Haven
  2. 2.Department of Chemical EngineeringUniversity of ColoradoBoulder
  3. 3.Pharmaceutical R&DGenentech, Inc., SSan Francisco

Personalised recommendations