Characters of U q (gl(n))-Reflection Equation Algebra
Article
- 68 Downloads
- 13 Citations
Abstract
We list characters (one-dimensional representations) of the reflection equation algebra associated with the fundamental vector representation of the Drinfeld–Jimbo quantum group \(\mathcal{U}\) q (gl(n)).
reflection equation algebra
Preview
Unable to display preview. Download preview PDF.
References
- 1.Alekseev, A., Faddeev, L. and Semenov-Tian-Shansky, M.: Hidden quantum group inside Kac-Moody algebra, Comm.Math. Phys. 149(2) (1992), 335-345.Google Scholar
- 2.Cherednik, I.: Factorizing particles on a half-line, Theoret.Math.Phys. 64 (1984), 35-44.Google Scholar
- 3.Donin, J.: Double quantization on the coadjoint representation of sl(n), Czech J.Phys. 47(11) (1997), 1115-1122.Google Scholar
- 4.Donin, J.: Quantum G-manifolds, math.QA/0109203.Google Scholar
- 5.Donin, J. and Mudrov, A. (q (sl(n))-invariant quantization of symmetric coadjoint orbits via reflection equation algebra, math.QA/0108112.Google Scholar
- 6.Donin, J. and Mudrov, A.: Method of quantum characters in equivariant quantization, math.QA/0204298.Google Scholar
- 7.Drinfeld, V. G.: Quantum groups, In: A.V. Gleason (ed.), Proc.Internat. Congr.Mathematicians, Berkeley 1986, Amer. Math. Soc., Providence, 1987, pp. 798-820.Google Scholar
- 8.Faddeev, L., Reshetikhin, N. and Takhtajan, L.: Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 193-226.Google Scholar
- 9.Kulish, P. P.: Quantum groups, q-oscillators, and covariant algebras, Theoret.Math. Phys. 94 (1993), 137-141.Google Scholar
- 10.Kulish, P. P. and Sasaki, R.: Covariance properties of reflection equation algebras, Progr. Theoret.Phys. 89(3) (1993), 741-761.Google Scholar
- 11.Kulish, P. P. and Sklyanin, E. K.: Algebraic structure related to the reflection equation, J. Phys. A 25 (1992), 5963-5975.Google Scholar
- 12.Kulish, P. P., Sasaki, R. and Schweibert, C.: Constant solutions of reflection equations and quantum groups, J. Math. Phys. 34(1) (1993), 286-304.Google Scholar
- 13.Sklyanin, E. K.: Boundary conditions for integrable quantum systems, J. Phys. A 21 (1988), 2375-2389.Google Scholar
Copyright information
© Kluwer Academic Publishers 2002