Advertisement

Letters in Mathematical Physics

, Volume 60, Issue 3, pp 283–291 | Cite as

Characters of U q (gl(n))-Reflection Equation Algebra

  • A. Mudrov
Article

Abstract

We list characters (one-dimensional representations) of the reflection equation algebra associated with the fundamental vector representation of the Drinfeld–Jimbo quantum group \(\mathcal{U}\) q (gl(n)).

reflection equation algebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alekseev, A., Faddeev, L. and Semenov-Tian-Shansky, M.: Hidden quantum group inside Kac-Moody algebra, Comm.Math. Phys. 149(2) (1992), 335-345.Google Scholar
  2. 2.
    Cherednik, I.: Factorizing particles on a half-line, Theoret.Math.Phys. 64 (1984), 35-44.Google Scholar
  3. 3.
    Donin, J.: Double quantization on the coadjoint representation of sl(n), Czech J.Phys. 47(11) (1997), 1115-1122.Google Scholar
  4. 4.
    Donin, J.: Quantum G-manifolds, math.QA/0109203.Google Scholar
  5. 5.
    Donin, J. and Mudrov, A. (q (sl(n))-invariant quantization of symmetric coadjoint orbits via reflection equation algebra, math.QA/0108112.Google Scholar
  6. 6.
    Donin, J. and Mudrov, A.: Method of quantum characters in equivariant quantization, math.QA/0204298.Google Scholar
  7. 7.
    Drinfeld, V. G.: Quantum groups, In: A.V. Gleason (ed.), Proc.Internat. Congr.Mathematicians, Berkeley 1986, Amer. Math. Soc., Providence, 1987, pp. 798-820.Google Scholar
  8. 8.
    Faddeev, L., Reshetikhin, N. and Takhtajan, L.: Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 193-226.Google Scholar
  9. 9.
    Kulish, P. P.: Quantum groups, q-oscillators, and covariant algebras, Theoret.Math. Phys. 94 (1993), 137-141.Google Scholar
  10. 10.
    Kulish, P. P. and Sasaki, R.: Covariance properties of reflection equation algebras, Progr. Theoret.Phys. 89(3) (1993), 741-761.Google Scholar
  11. 11.
    Kulish, P. P. and Sklyanin, E. K.: Algebraic structure related to the reflection equation, J. Phys. A 25 (1992), 5963-5975.Google Scholar
  12. 12.
    Kulish, P. P., Sasaki, R. and Schweibert, C.: Constant solutions of reflection equations and quantum groups, J. Math. Phys. 34(1) (1993), 286-304.Google Scholar
  13. 13.
    Sklyanin, E. K.: Boundary conditions for integrable quantum systems, J. Phys. A 21 (1988), 2375-2389.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • A. Mudrov
    • 1
  1. 1.Department of MathematicsBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations