Pharmaceutical Research

, Volume 12, Issue 10, pp 1430–1434 | Cite as

Conformational Analysis of Methylphenidate and Its Structural Relationship to Other Dopamine Reuptake Blockers Such as CFT

  • Mark Froimowitz
  • Kennerly S. Patrick
  • Vivian Cody


Purpose. This work was performed 1) to determine the conformational preferences of the threo and erythro isomers of the dopamine reuptake blocker methylphenidate, 2) to determine the crystal conformation of the threo isomer, 3) to confirm the absolute configuration of the more active threo enantiomer, and 4) to incorporate the compound into a previously determined pharmacophore for dopamine reuptake blockers.

Methods. A conformational analysis was performed with the MM2-87 program, a crystal of the (– )-threo HC1 salt was analyzed by x-ray crystallography, and the global minima of the (+ }-threo isomer and the potent dopamine reuptake blocker CFT were superimposed.

Results. In the global minimum of the threo isomer, the carbonyl oxygen of the ester group is oriented toward the ammonium group as was also found in the crystal state. In the erythro isomer, the ester group prefers an extended conformation relative to the piperidine group. The absolute configuration of the biologically active ( + )-threo enantiomer was confirmed to be R,R. The atomic sequence from the amine group through the ester group is identical in the active enantiomers of methylphenidate and CFT.

Conclusions. The dopamine reuptake protein requires a precise orientation of the ammonium and ester groups but allows considerable leeway in the position of the phenyl ring. The pKa of the threo isomer is predicted to be higher than that of the erythro isomer.

methylphenidate molecular mechanics x-ray crystallography dopamine reuptake blockers absolute configuration pharmacophore 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. K. Madras, M. A. Fahey, J. Bergman, D. R. Canfield, and R. D. Spealman. Effects of cocaine and related drugs in nonhuman primates. I. [3H]Cocaine binding sites in caudate-putamen. J. Pharm. Exp. Ther. 251:131–141 (1989).Google Scholar
  2. 2.
    R. D. Spealman, B. K. Madras, and J. Bergman. Effects of cocaine and related drugs in nonhuman primates. II. Stimulant effects on schedule-controlled behavior. J. Pharm. Exp. Ther. 251:142–149 (1989).Google Scholar
  3. 3.
    J. Bergman, B. K. Madras, S. E. Johnson, and R. D. Spealman. Effects of cocaine and related drugs in nonhuman primates. III. Self-administration by squirrel monkeys. J. Pharm. Exp. Ther. 251:150–155 (1989).Google Scholar
  4. 4.
    M. Froimowitz. Conformational analysis of cocaine, the potent analog 2β-carbomethoxy-3β-(4-fluorophenyl)tropane (CFT), and other dopamine reuptake blockers. J. Computat. Chem. 14:934–943 (1993).Google Scholar
  5. 5.
    P. C. Meltzer, A. Y. Liang, A.-L. Brownell, D. R. Elmaleh, and B. K. Madras. Substituted 3-phenyltropane analogs of cocaine: Synthesis, inhibition of binding at cocaine recognition sites, and positron emission tomography imaging. J. Med. Chem. 36:855–862 (1993).Google Scholar
  6. 6.
    M. E. A. Reith, B. E. Meisler, H. Sershen, and A. Lajtha. Structural requirements for cocaine congeners to interact with dopamine and serotonin uptake sites in mouse brain and to induce stereotyped behavior. Biochem. Pharmacol. 35:1123–1129 (1986).Google Scholar
  7. 7.
    M. C. Ritz, E. J. Cone, and M. J. Kuhar. Cocaine inhibition of ligand binding at dopamine, norepinephrine and serotonin transporters: A structure-activity study. Life Sci. 46:635–645 (1990).Google Scholar
  8. 8.
    A. P. Kozikowski, L. Xiang, J. Tanaka, J. S. Bergmann, and K. M. Johnson. Use of nitrile oxide cycloaddition (NOC) chemistry in the synthesis of cocaine analogues; mazindol binding and dopamine uptake studies. Med. Chem. Res. 1:312–321 (1991).Google Scholar
  9. 9.
    A. P. Kozikowski, M. Roberti, L. Xiang, J. S. Bergmann, P. M. Callahan, K. A. Cunningham, and K. M. Johnson. Structure-activity relationship studies of cocaine: replacement of the C-2 ester group by vinyl argues against H-bonding and provides an esterase-resistant, high affinity cocaine analogue. J. Med. Chem. 35:4764–4766 (1992).Google Scholar
  10. 10.
    L. Szporny and P. Görög. Investigations into the correlations between monoamine oxidase inhibition and other effects due to methylphenidate and its stereoisomers. Biochem. Pharmacol. 8:263–268 (1961).Google Scholar
  11. 11.
    R. Rometsch. Process for the conversion of stereoisomers. U.S. Patent 2,838,519 (1958).Google Scholar
  12. 12.
    C. K. Buckner, P. N. Patil, A. Tye, and L. Malspeis. Steric aspects of adrenergic drugs. XII. Some peripheral effects of (±)-erythro-and (±)-threo-methylphenidate. J. Pharm. Exp. Ther. 166:308–319 (1969).Google Scholar
  13. 13.
    R. A. Maxwell, E. Chaplin, S. Batmanglidj Eckhardt, J. R. Soares, and G. Hite. Conformational similarities between molecular models of phenethylamine and of potent inhibitors of the uptake of tritiated norepinephrine by adrenergic nerves in rabbit aorta. J. Pharm. Exp. Ther. 173:158–165 (1970).Google Scholar
  14. 14.
    K. S. Patrick, C. D. Kilts, and G. R. Breese. Synthesis and pharmacology of hydroxylated metabolites of methylphenidate. J. Med. Chem. 29:1237–1240 (1981).Google Scholar
  15. 15.
    M. M. Schweri, P. Skolnik, M. F. Rafferty, K. C. Rice, A. J. Janowsky, and S. M. Paul. [3H]Threo-(±)-methylphenidate binding to 3,4-dihydroxyphenylethylamine uptake sites in corpus striatum: Correlation with the stimulant properties of ritalinic acid esters. J. Neurochem. 45:1062–1070 (1985).Google Scholar
  16. 16.
    K. S. Patrick, R. W. Caldwell, R. M. Ferris, and G. R. Breese. Pharmacology of the enantiomers of threo-methylphenidate. J. Pharm. Exp. Ther. 241:152–158 (1987).Google Scholar
  17. 17.
    D. A. Eckerman, S. S. Moy, A. N. Perkins, K. S. Patrick, and G. R. Breese. Enantioselective behavioral effects of methylphenidate in rats. Pharmacol. Biochem. Behav. 40:875–880 (1991).Google Scholar
  18. 18.
    A. Shafi'ee and G. Hite. The absolute configuration of the pheniramines, methyl phenidates, and pipradrols. J. Med. Chem. 12:266–270 (1969).Google Scholar
  19. 19.
    L. Panizzon. La preparazione di piridil-e piperidil-arilacetonitrili e di alcuni prodotti di transformazione. Helv. Chim. Acta 27:1748–1756 (1944).Google Scholar
  20. 20.
    N. L. Allinger and Y. H. Yuh. Quantum Chem. Program Exch. 12, program 395.Google Scholar
  21. 21.
    Quantum Chemistry Program Exchange, Department of Chemistry, Indiana University, Bloomington, IN 47405.Google Scholar
  22. 22.
    M. Froimowitz and V. Cody. Biologically active conformers of phenothiazines and thioxanthenes. Further evidence for a ligand model of dopamine D2 receptor antagonists. J. Med. Chem. 36:2219–2227 (1993).Google Scholar
  23. 23.
    M. Froimowitz and P. J. Gans. Comparison of semiempirical classical and semiempirical quantum mechanical calculations on acetylcholine. J. Amer. Chem. Soc. 94:8020–8025 (1972).Google Scholar
  24. 24.
    Serena Software, Box 3076, Bloomington, IN 47402-3076.Google Scholar
  25. 25.
    teXsan: Crystal Structure Analysis Package, Molecular Structure Corporation, 1992.Google Scholar
  26. 26.
    D. C. Creagh and J. H. Hubbell. International Tables for Crystallography, Volume C, Wilson, A. J. C., ed., Kluwer Academic Publishers, Boston, 1992.Google Scholar
  27. 27.
    I. Weisz and A. Dudás. Über stereoisomere 2-piperidylphenylessigsäure-methylester. Die raumstrucktur eines 7-phenyl-azabicyclo[0.2.4]octans. Monatsh. Chem. 91:840–849 (1960).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Mark Froimowitz
    • 1
    • 2
  • Kennerly S. Patrick
    • 3
  • Vivian Cody
    • 4
  1. 1.Pharm-Eco LaboratoriesLexington
  2. 2.Alcohol and Drug Abuse Research Center, Harvard Medical SchoolMcLean HospitalBel-mont
  3. 3.Department of Pharmaceutical Sciences, College of PharmacyMedical University of South CarolinaCharleston
  4. 4.Hauptman-Woodward Medical Research Institute, Inc.

Personalised recommendations