Pharmaceutical Research

, Volume 12, Issue 10, pp 1395–1406 | Cite as

Cerebrovascular Permeability to Peptides: Manipulations of Transport Systems at the Blood-Brain Barrier

  • Berislav V. Zlokovic
Article

Abstract

The study of peptide transport across the blood-brain barrier (BBB) is a field fraught with conflicting interpretations. This review presents a fairly strong case that peptides can be differentially transported at the BBB. However, minimal transport of peptides could have important impact on central nervous system (CNS) functions since only small amounts are needed for physiologic, pharmacologic and/or pathologic effects. Several BBB peptide transport mechanisms (i.e., receptor-mediated, absorptive-mediated, carrier-mediated and non-specific passive diffusion), as well as non-transport processes (i.e., endocytosis without transcytosis, aborption and metabolism) are discussed. It is emphasized that peptide transport systems at the BBB could be important targets for both therapeutic delivery of peptides and the development of certain brain pathologies. Strategies to manipulate peptide BBB transport processes have been discussed including lipidization, chemical modifications of the N-terminal end, coupling of transport with post-BBB metabolism and formation of potent neuroactive peptides, up-regulation of putative peptide transporters, use of chimeric peptides in which non-transportable peptide is chemically linked to a transportable peptide, use of monoclonal antibodies against peptide receptors, and binding of circulating peptides to apolipoproteins. It is suggested that future directions should be directed towards development of molecular strategies to up-regulate specific BBB peptide transporters to enhance brain delivery of peptide neuropharmaceuticals, or to down-regulate transport of peptides with potential role in cerebral pathogenesis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J.G. McComb and B. V. Zlokovic. Cerebrospinal fluid and the blood-brain interface. In W. R. Cheek, A. E. Marlin, D. G. McLone, D. H. Reigel, and M. L. Walker (eds), Pediatric Neurosurgery, W. B. Saunders Co., Philadelphia, 1994, pp. 167–185.Google Scholar
  2. 2.
    P. A. Cancilla, J. Bready, and J. Berliner. Brain endothelial-astrocyte interactions. In W. M. Pardridge (eds), The Blood-Brain Barrier, Cellular and Molecular Biology, Raven Press, New York, 1993, pp. 25–46.Google Scholar
  3. 3.
    I. M. Herman. Microvascular pericytes in development and disease. In W. M. Pardridge (eds), The Blood-Brain Barrier, Cellular and Molecular Biology, Raven Press, New York, 1993, pp. 127–136.Google Scholar
  4. 4.
    H. Davson, B. V. Zlokovic, L. Rakic, and M. B. Segal. Introduction to the Blood-Brain Barrier, Macmillan Press, London, 1993, pp. 146–293.Google Scholar
  5. 5.
    W. H. Oldendorf. Some relationships between addiction and drug delivery to the brain. In J. Frankenheim and R. M. Brown (eds), Bioavailability of Drugs to the Brain and the Blood-Brain Barrier, NIDA Research Monographs, Washington D.C., Government Publication, 1992, pp. 13–25.Google Scholar
  6. 6.
    W. M. Pardridge. Plasma protein-mediated transport of steroid and thyroid hormones, Am. J. Physiol. 251: E204–E208 (1987).Google Scholar
  7. 7.
    W. M. Pardridge and R. J. Boado. Molecular cloning and regulation of gene expression of blood-brain barrier glucose transporter. In W. M. Pardridge (eds), The Blood-Brain Barrier, Cellular and Molecular Biology, Raven Press, New York, 1993, pp. 395–440.Google Scholar
  8. 8.
    B. V. Zlokovic, J. B. Mackic, L. Wang, J. G. McComb, and A. A. McDonough. Differential expression of Na,K-ATPase α and β subunit isoforms at the blood-brain barrier and the choroid plexus, J. Biol. Chem. 268: 8019–8025 (1993).Google Scholar
  9. 9.
    M. B. Segal and B. V. Zlokovic. Blood-Brain Barrier: Amino Acids and Peptides, Kluwer Academic Publishers, Lancaster & Boston (1990), pp. 47–123.Google Scholar
  10. 10.
    W. M. Pardridge. Peptide Drug Delivery to the Brain, Raven Press, New York, 1991, pp. 23–52.Google Scholar
  11. 11.
    E. M. Cornford, L. D. Braun, P. D. Crane, and W. H. Oldendorf. Blood-brain barrier restriction of peptides and the low uptake of enkephalins, Endocrinology 103: 1297–1303 (1978).Google Scholar
  12. 12.
    W. H. Oldendorf. Blood-brain barrier permeability to peptides, pitfalls in measurements, Peptides 2: 109–111 (1981).Google Scholar
  13. 13.
    B. V. Zlokovic, D. J. Begley, and D. G. Chain. Blood-brain permeability to di-peptides and their constituent amino acids, Brain Res. 271: 66–71 (1983).Google Scholar
  14. 14.
    B. V. Zlokovic, M. B. Segal, D. J. Begley, H. Davson and L. Rakic. Permeability of the blood-cerebrospinal fluid and blood-brain barriers to thyrotropin releasing hormone, Brain Res. 358: 191–199 (1985).Google Scholar
  15. 15.
    B. V. Zlokovic, D. J. Begley, and D. G. Chain-Eliash. Blood-brain barrier permeability to leucine-enkephalin, D-alanine2-D-leucine5-enkephalin and their N-terminal amino acid (tyrosine), Brain Res. 336: 125–132 (1985).Google Scholar
  16. 16.
    A. Ermisch, H. J. Ruhle, R. Landgraf, and J. Hess. Blood-brain barrier and peptides, J. Cereb. Blood Flow Metab. 5: 350–358 (1985).Google Scholar
  17. 17.
    R. Kannan, J. F. Kuhlenkamp, E. Jeandidier, H. Trinh, M. Ookhtens, and N. Kaplowitz. Evidence for carrier-mediated transport of glutathione across the blood-brain barrier in the rat, J. Clin. Invest. 85: 2009–2113 (1990).Google Scholar
  18. 18.
    R. Kannan, J. F. Kuhlenkamp, M. Ookhtens, and N. Kaplowitz. Transport of glutathione at the blood-brain barrier of the rat: inhibition by glutathione analogs and age-dependence, J. Pharmacol. Exp. Ther. 263: 964–970 (1992).Google Scholar
  19. 19.
    B. V. Zlokovic, J. B. Mackic, J. G. McComb, M. H. Weiss, N. Kaplowitz, and R. Kannan. Evidence for transcapillary transport of reduced glutathione in vascular perfused guinea-pig brain, Biochem. Biophys. Res. Commun. 201: 402–408 (1994).Google Scholar
  20. 20.
    A. J. Lastin, C. Nissan, A. V. Schaly, and D. H. Coy. Blood-brain barrier, half-time disappearance and brain distribution for labeled enkephalin and a potent analog, Brain Res. Bull. 1: 583–589 (1976).Google Scholar
  21. 21.
    W. M. Pardridge. Recent advances in blood-brain transport, Ann. Neurol. Pharmacol. Toxicol. 28: 25–39 (1988).Google Scholar
  22. 22.
    R. Kannan, J-R. Yi, Y. Li, D. Tang, B. V. Zlokovic, and N. Kaplowitz. Expression of brain capillary GSH transport in Xenopus Laevis oocytes. Soc. Neurosci. Abstr. (1995, in press)Google Scholar
  23. 23.
    B. V. Zlokovic, D. J. Begley, B. M. Duricic, and D. M. Mitrovic. Measurement of solute transport across the blood-brain barrier in the perfused guinea-pig brain, method and application to N-methyl-α-aminoisobutyric acid, J. Neurochem. 46: 1444–1451 (1986).Google Scholar
  24. 24.
    B. V. Zlokovic. In vivo approaches for studying peptide interactions at the blood-brain barrier, J. Control Release 13: 185–202 (1990).Google Scholar
  25. 25.
    Y. Takasato, S. I. Rapoport, and Q. R. Smith. An in situ brain perfusion technique to study cerebrovascular transport in the rat, Am. J. Physiol. 247: H484–H493 (1984).Google Scholar
  26. 26.
    D. Triguero, J. B. Buciak, W. M. Pardridge. Capillary depletion method for quantification of blood-brain barrier transport of circulating peptides and plasma proteins, J. Neurochem. 54: 1882–1888 (1990).Google Scholar
  27. 27.
    B. V. Zlokovic, J. G. McComb, L. Perlmutter, M. H. Weiss, and H. Davson. Neuroactive peptides and amino acids at the blood-brain barrier: possible implications to drug abuse. In J. Frankenheim and R. Brown (eds), Bioavailability of Drugs to the Brain and the Blood-Brain Barrier, NIDA Research Monographs, Washington D.C., Government Publication, 1992, pp. 26–42.Google Scholar
  28. 28.
    A. Sam II, U. Bickel, U. Stroth, and W. M. Pardridge. Blood-brain barrier transport of neuropeptides: analysis with metabolically stable dermorphin analogue, Am. J. Physiol. 267: E124–E131 (1994).Google Scholar
  29. 29.
    W. M. Pardridge, D. Triguero, and J. L. Buciak. β-endorphin chimeric peptides: transport through the blood-brain barrier in vivo and cleavage of disulfide linkage by brain, Endocrinology 126: 977–984 (1990).Google Scholar
  30. 30.
    B. V. Zlokovic, W. A. Banks, H. ElKadi, J. Erchegyu, J. B. Mackic, J. G. McComb, and A. Kastin. Transport, uptake, and metabolism of blood-borne vasopressin by the blood-brain barrier, Brain Res. 590: 213–218 (1992).Google Scholar
  31. 31.
    K. R. Duffy, and W. M. Pardridge. Blood-brain barrier transcytosis of insulin in developing rabbits, Brain Res. 420: 32–38 (1987).Google Scholar
  32. 32.
    R. D. Broadwell, B. J. Balin, and M. Salcman. Transcytotic pathway for blood-borne protein through the blood-brain barrier, Proc. Natl Acad. Sci. 85: 632–636 (1988).Google Scholar
  33. 33.
    B. V. Zlokovic, M. N. Lipovac, D. J. Begley, H. Davson, and L. M. Rakic. Transport of leucine-enkephalin across the blood-brain barrier in the perfused guinea-pig brain, J. Neurochem. 49: 310–315 (1987).Google Scholar
  34. 34.
    B. V. Zlokovic, J. B. Mackic, B. Djuricic, and H. Davson. Kinetic analysis of leucine-enkephalin cellular uptake at the luminal side of the blood-brain barrier of an in situ perfused guinea-pig brain, J. Neurochem 53: 1333–1340 (1989).Google Scholar
  35. 35.
    A. J. Kastin, R. D. Olson, A. V. Schally, and D. H. Coy. CNS effects of peripherally administered brain peptides, Life Sci. 25: 401–414 (1979).Google Scholar
  36. 36.
    I. Bueno and J. P. Ferre. Central regulation of intestinal motility by somatostatin and cholecystokinin octapeptide, Science 216: 1427–1429 (1982).Google Scholar
  37. 37.
    W. A. Banks and A. J. Kastin. Aluminum alters the permeability of the blood-brain barrier to some non-peptides, Neuropharmacology 24: 407–412 (1985).Google Scholar
  38. 38.
    J. E. Zadina, W. A. Banks, and A. J. Kastin. Central nervous system effects of peptides. 1980–1985, a cross-listing of peptides and their central actions from the first six years of the journal Peptides, Peptides 7: 497–537 (1986).Google Scholar
  39. 39.
    R. G. Clark, P. M. Jones, and I. C. A. F. Robinson. Clearance of vasopressin from cerebrospinal fluid to blood in chronically cannulated Brattleboro rats, Neuroendocrinology 37: 242–247 (1983).Google Scholar
  40. 40.
    E. Passaro, H. Debas, W. Oldendorf, and T. Yamada. Rapid appearance of intraventricularly administered neuropeptides in the peripheral circulation, Brain Res. 241: 335–340 (1982).Google Scholar
  41. 41.
    B. V. Zlokovic, V. Susic, H. Davson, D. J. Begley, R. M. Jankov, D. M. Mitrovic, and M. N. Lipovac. Saturable mechanisms for delta sleep inducing peptide uptake at the blood-brain barrier of vascularly perfused guinea-pig brain, Peptides 10: 249–259 (1989).Google Scholar
  42. 42.
    B. V. Zlokovic, M. N. Lipovac, D. J. Begley, H. Davson and L. M. Rakic. Slow penetration of thyrotropin-releasing hormone across the blood-brain barrier of an in situ perfused guinea-pig brain, J. Neurochem. 51: 252–257 (1988).Google Scholar
  43. 43.
    D. J. Begley, L. K. Squires, B. V. Zlokovic, D. M. Mitrovic, C. W. Hughes, P. A. Revest, and J. Greenwood. Permeability of the blood-brain barrier to the immunosuppressive cyclic peptide cyclosporin, J. Neurochem. 55: 1222–1230 (1990).Google Scholar
  44. 44.
    B. V. Zlokovic, J. Ghiso, J. B. Mackic, J. G. McComb, M. H. Weiss, and B. Frangione. Blood-brain barrier transport of circulating Alzheimer's amyloid β, Biochem. Biophys. Res. Commun. 197: 1034–1040 (1993).Google Scholar
  45. 45.
    B. V. Zlokovic, D. S. Skundric, M. B. Segal, M. N. Lipovac, J. B. Mackic, and H. Davson. A saturable mechanism for transport of immunoglobulin G across the blood-brain barrier of the guinea-pig, Exp. Neurol 107: 263–270 (1990).Google Scholar
  46. 46.
    B. V. Zlokovic, C. L. Martel, J. B. Mackic, E. Matsubara, T. Wisniewski, J. G. McComb, B. Frangione, and J. Ghiso. Brain uptake of circulating apolipoproteins J and E complexed to Alzheimer's amyloid β, Biochem. Biophys. Res. Commun. 205: 1431–1437 (1994).Google Scholar
  47. 47.
    J. F. Poduslo, G. L. Curran, and C. Berg. Macromolecular permeability across the blood-nerve and blood-brain barriers, Proc. Natl. Acad. Sci. USA 91: 5705–5709 (1994).Google Scholar
  48. 48.
    W. A. Banks, A. J. Horvath, and E. A. Michals. Carriermediated transport of vasopressin across the blood-brain barrier of the mouse, J. Neurosci. Res. 18: 326–332 (1987).Google Scholar
  49. 49.
    B. V. Zlokovic, S. Hyman, J. G. McComb, M. N. Lipovac, G. Tang, and H. Davson. Kinetics of vasopressin-arginine uptake at the blood-brain barrier, Biochim. Biophys. Acta 1025: 191–198 (1990).Google Scholar
  50. 50.
    W. A. Banks, A. J. Kastin, and C. M. Barrera. Delivering peptides to the central nervous system: dilemmas and strategies, Pharmac. Res. 8: 1345–1350 (1991).Google Scholar
  51. 51.
    P. M. Friden. Receptor-mediated transport of therapeutics across the blood-brain barrier, Neurosurgery 35: 294–298 (1994).Google Scholar
  52. 52.
    W. M. Pardridge and L. J. Mietus. Enkephalin and blood-brain barrier: studies of binding and degradation in isolated brain microvessels, Endocrinology 109: 1138–1143 (1981).Google Scholar
  53. 53.
    S. I. Rapoport, W. A. Klee, K. D. Pettigrew, and K. Ohno. Entry of opioid peptides into the central nervous system, Science 207: 84–86 (1980).Google Scholar
  54. 54.
    N. Tsuzuki, T. Hama, T. Hibi, R. Konishi, S. Futaki, and K. Kitagawa. Adamantane as a brain-directed drug carrier for poorly absorbed drug: anti-nociceptive effects of [D-Ala2] leuenkephalin derivatives conjugated with I-adamantane moiety, Biochem. Pharmacol. 41: R5–R8 (1991).Google Scholar
  55. 55.
    W. A. Banks, A. J. Kastin, H. M. Sam, V. T. Cao, B. King, L. M. Maness, and A. V. Schally. Saturable efflux of the peptides RC-160 and Tyr-MIF-1 by different parts of the blood-brain barrier, Brain Res. Bull. 35: 179–182 (1994).Google Scholar
  56. 56.
    B. V. Zlokovic, M. B. Segal, J. G. McComb, S. Hyman, M. H. Weiss, and H. Davson. Kinetics of circulating vasopressin uptake by the choroid plexus, Am. J. Physiol. (Renal Fluid Electrolyte Physiol.) 260: F216–F224 (1991).Google Scholar
  57. 57.
    B. V. Zlokovic, S. Hyman, J. G. McComb, G. Tang, A. R. Rezai, and M. H. Weiss. Kinetics of vasopressin-arginine uptake by the hypothalamo-pituitary axis and pineal glands in guinea-pigs, Am. J. Physiol. (Endocrinol. Metab.) 260: E633–E640 (1991).Google Scholar
  58. 58.
    M. N. Lipovac, E. Barron, L. Perlmutter, M. H. Weiss, J. G. McComb, and B. V. Zlokovic. Chronic nicotine treatment increases blood-brain transport and capillary sequestration of vasopressin in nicotine-treated guinea-pigs, Soc. Neurosci. Abstr. 18: 1492 (1992).Google Scholar
  59. 59.
    J. F. Wilson. Low permeability of the blood-brain barrier to nanomolar concentrations of immunoreactive alphamelanotropin, Psychopharmacology 96: 262–266 (1988).Google Scholar
  60. 60.
    K. L. Audus, P. J. Chickhale, D. W. Miller, S. E. Thompson, and R. T. Borchardt. Brain uptake of drugs: the influence of chemical and biological factors, Adv. Drug Res. 23: 1–64 (1992).Google Scholar
  61. 61.
    B. V. Zlokovic, M. B. Segal, H. Davson, and R. M. Jankov. Passage of delta sleep-inducing peptide (DSIP) across the blood-cerebrospinal fluid barrier, Peptides 9: 533–538 (1988).Google Scholar
  62. 62.
    B. V. Zlokovic, M. B. Segal, H. Davson, and D. M. Mitrovic. Unidirectional uptake of enkephalins at the blood-tissue interface of the blood-cerebrospinal fluid barrier: a saturable mechanism, Regul. Peptides 20: 33–44 (1988).Google Scholar
  63. 63.
    W. M. Pardridge, D. Triguero, J. Yang, and P. A. Cancilla. Comparison of in vitro and in vivo models of drug transcytosis through the blood-brain barrier, J. Pharmacol. Exp. Ther. 253: 884–891 (1990).Google Scholar
  64. 64.
    W. A. Banks, A. J. Kastin, V. Akerstrom, and J. B. Jaspan. Radioactively iodinated cyclo(His-Pro) crosses the blood-brain barrier and reverses ethanol-induced narcosis, Am. J. Physiol. (Endocrinol. Metab.) 264: E723–E729 (1993).Google Scholar
  65. 65.
    Y.-S. Kang and W. M. Pardridge. Use of neutral-avidin improves pharmacokinetics and brain delivery of biotin bound to an avidin-monoclonal antibody conjugate, J. Pharmacol. Exp. Ther. 269: 344–350 (1994).Google Scholar
  66. 66.
    P. M. Friden, L. R. Walus, P. Watson, S. R. Doctrow, J. W. Kozarich, C. Backman, H. Bergman, B. Hoffer, F. Bloom, and A.-C. Granholm. Blood-brain barrier penetration and in vivo activity of an NGF conjugate, Science 259: 373–377 (1993).Google Scholar
  67. 67.
    U. Bickel, T. Yoshikawa, E. M. Landaw, K. F. Faull, and W. M. Pardridge. Pharmacologic effects in vivo in brain by vector-mediated peptide drug delivery, Proc. Natl. Acad. Sci. 90: 2618–2622 (1993).Google Scholar
  68. 68.
    J.-R. Yi, S. Lu, J. Fernandez-Checa, and N. Kaplowitz. Expression cloning of a rat hepatic reduced glutathione transporter with canalicular characteristics, J. Clin. Invest. 93: 1841–1845 (1994).Google Scholar
  69. 69.
    J. Ghiso, T. Wisniewski, and B. Frangione. Unifying features of systemic and cerebral amyloidosis. Mol. Neurobiol. 8: 49–64 (1994).Google Scholar
  70. 70.
    B. V. Zlokovic, C. L. Martel, J. B. Mackic, E. Matsubara, T. Wisniewski, J. G. McComb, B. Frangione, and J. Ghiso. Blood-brain barrier transport and cerebral capillary sequestration of Alzheimer's amyloid ß: modifications by apolipoproteins J, E3 and E4, Cereb. Vasc. Biol. Conference, Paris, 10–12 July (1995).Google Scholar
  71. 71.
    A. Koudinov, E. Matsubara, B. Frangione, and J. Ghiso. The soluble form of Alzheimer's amyloid beta protein is complexed to high density lipoprotein 3 and very high density lipoprotein in normal human plasma, Biochem. Biophys. Res. Commun. 205: 1164–1171 (1994).Google Scholar
  72. 72.
    E. Matsubara, B. Frangione, and J. Ghiso. Characterization of apolipoprotein J-Alzheimer's amyloid beta interaction, J. Biol. Chem. 270: 7563–7567 (1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Berislav V. Zlokovic
    • 1
  1. 1.Departments of Neurological Surgery, Physiology and Biophysics and Division of Neurosurgery, Children's Hospital Los AngelesUniveristy of Southern California School of MedicineLos Angeles

Personalised recommendations