Biologia Plantarum

, Volume 45, Issue 3, pp 337–345

Development and Characterization of Microsatellite Markers from Chromosome 1-Specific DNA Libraries of Vicia Faba

  • D. Požárková
  • A. Koblížková
  • B. Román
  • A.M. Torres
  • S. Lucretti
  • M. Lysák
  • J. Doležel
  • J. Macas
Article

Abstract

An integrated approach has been developed for targeted retrieval of microsatellite markers from selected regions of the field bean (Vicia faba L.) genome. The procedure is based on a combination of advanced physical and genetic mapping techniques and includes the following steps: 1) flow-sorting of metaphase chromosomes, 2) construction of microsatellite-enriched chromosome-specific DNA libraries, 3) isolation of polymorphic microsatellite sequences from the libraries, 4) testing chromosome specificity of the microsatellites using polymerase chain reaction with purified fractions of individual chromosome types, and 5) integration of chromosome-specific markers into a genetic map. Several strategies for isolation of microsatellite clones were tested, including direct screening of non-enriched libraries with single or mixed probes and screening of the libraries after one or two rounds of enrichment. Finally, the usefulness of this approach was demonstrated by the retrieval of novel markers from a selected portion of the largest field been chromosome (No. 1).

field bean flow-sorting genetic map physical mapping plant chromosomes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.-Nucleic Acids Res. 25: 3389–3402, 1997.Google Scholar
  2. Armour, J.A.L., Neumann, R., Gobert, S., Jeffreys, A.J.: Isolation of human simple repeat loci by hybridization selection.-Hum. mol. Genet. 4: 599–605, 1994.Google Scholar
  3. Arumuganathan, K., Martin, G.B., Telenius, H., Tanksley, S.D., Earle, E.D.: Chromosome 2-specific DNA clones from flow-sorted chromosomes of tomato.-Mol. gen. Genet. 242: 551–558, 1994.Google Scholar
  4. Aydin, A.: How to map a gene.-J. mol. Med. 77: 691–694, 1999.Google Scholar
  5. Barreneche, T., Bodenes, C., Lexer, C., Trontin, J.F., Fluch, S., Streiff, R., Plomion, C., Roussel, G., Steinkellner, H., Burg, K., Favre, J.M., Glossl, J., Kremer, A.: A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 5S rDNA markers.-Theor. appl. Genet. 97: 1090–1103, 1998.Google Scholar
  6. Beckmann, J.S., Weber, J.L.: Survey of human and rat microsatellites.-Genomics 12: 627–631, 1992.Google Scholar
  7. Bennett, M.D., Leitch, I.: Nuclear DNA amounts in angiosperms.-Ann. Bot. 76: 113–176, 1995.Google Scholar
  8. Brondani, R.P.V., Brondani, C., Tarchini, R., Grattapaglia, D.: Development, characterization and mappping of microsatellite markers in Eucalyptus grandis and E. urophylla.-Theor. appl. Genet. 97: 816–827, 1998.Google Scholar
  9. Cabrera, A., Cubero, J.I., Martín, A.: Genetic mapping using trisomics in Vicia faba L.-FABIS Newslett. 23: 5–7, 1989.Google Scholar
  10. Cregan, P.B., Bhagwat, A.A., Akkaya, M.S., Rongwen, J.: Microsatellite fingerprinting and mapping of soybean.-Methods mol. Cell Biol. 5: 49–61, 1994.Google Scholar
  11. Dellaporta, S.L., Wood, J., Hicks, J.B.: A plant molecular DNA minipreparation. Version II.-Plant mol. Biol. Rep. 1: 19–21, 1983.Google Scholar
  12. Doležel, J., Lucretti, S.: High-resolution flow karyotyping and chromosome sorting in Vicia faba lines with standard and reconstructed karyotypes.-Theor. appl. Genet. 90: 797–802, 1995.Google Scholar
  13. Doležel, J., Lysák, M.A., Kubaláková, M., Šimková, H., Macas, J., Lucretti, S.: Sorting of Plant Chromosomes.-In: Darzynkiewicz, Z., Crissman, H.A., Robinson, J.P. (ed.): Methods in Cell Biology. Vol. 64. Part B. Pp. 3–31. Academic Press, San Diego 2001.Google Scholar
  14. Don, R.H., Cox, P.T., Wainwright, B.J., Baker, K., Mattick, J.S.: ‘Touchdown’ PCR to circumvent spurious priming during gene amplification.-Nucleic Acids Res. 19: 4008, 1991.Google Scholar
  15. Ellegren, H.: Abundant (A)n/(T)n mononucleotide repeats in the pig genome-linkage mapping of the porcine APOB, FSA, ALOX12, PEPN and RLN loci.-Animal Genet. 24: 367–372, 1993.Google Scholar
  16. Grimm, D.R., Goldman, T., Holley-Shanks, R., Buoen, L., Mendiola, J., Schook, L.B., Louis, C., Rohrer, G.A., Lunney, J.K.: Mapping of microsatellite markers developed from a flow-sorted swine Chromosome 6 library.-Mammal. Genome 8: 193–199, 1997.Google Scholar
  17. Hamada, H., Petrino, M.C., Takugana, T.: A novel repeated element with Z-DNA forming potential is widely found in diverse eucaryotic genomes.-Proc. nat. Acad. Sci. USA 79: 6465–6469, 1982.Google Scholar
  18. Hamilton, M.B., Pincus, E.L., DiFiore, A., Fleischer, R.C.: Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites.-BioTechniques 27: 500–507, 1999.Google Scholar
  19. Hicks, M., Adams, D., O'Keefe, S., Macdonald, E., Hodgetts, R.: The development of RAPD and microsatellite markers in lodgepole pine (Pinus contorta var. latifolia).-Genome 41: 797–805, 1998.Google Scholar
  20. Huang, W.G., Cipriani, G., Morgante, M., Testolin, R.: Microsatellite DNA in Actinidia chinensis: isolation characterisation, and homology in related species.-Theor. appl. Genet. 97: 1269–1278, 1998.Google Scholar
  21. Kijas, J.M.H., Fowler, J.C.S., Garbett, C.A., Thomas, M.R.: Enrichment of microsatellites from the citrus genome using biotinylated oligonucleotide sequences bound to streptavidin-coated magnetic particles.-BioTechniques 4: 657–662, 1994.Google Scholar
  22. Kijas, J.M.H., Thomas, M.R., Fowler, J.C.S., Roose, M.L.: Integration of trinucleotide microsatellites into a linkage map of Citrus.-Theor. appl. Genet. 94: 701–706, 1997.Google Scholar
  23. Koblížková, A., Doležel, J., Macas, J.: Subtraction with 3'modified oligonucleotides eliminates amplification artifacts in DNA libraries enriched for microsatellites.-BioTechniques 25: 32–38, 1998.Google Scholar
  24. Korzun, V., Roder, M.S., Wendehake, K., Pasqualone, A., Lotti, C., Ganal, M.W., Blanco, A.: Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat.-Theor. appl. Genet. 98: 1202–1207, 1999.Google Scholar
  25. Kosambi, D.D.: The estimation of map distance from recombination values.-Ann. Eugen. 12: 172–175, 1944.Google Scholar
  26. Kostia, S., Varvio, S.L., Vakkari, P., Pulkkinen, P.: Microsatellite sequences in a conifer Pinus sylvestris.-Genome 38: 1244–1248, 1995.Google Scholar
  27. Lagercrantz, U., Ellegren, H., Andersson, L.: The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates.-Nucleic Acids Res. 21: 1111–1115, 1993.Google Scholar
  28. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newburg, L.: MAPMAKER: an interactive computer program for constructing genetic linkage maps of experimental and natural populations.-Genomics 1: 174–181, 1987.Google Scholar
  29. Lassner, M.W., Peterson, P., Yoder, J.I.: Simultaneous amplification of multiple DNA fragments by polymerase chain reaction in the analysis of transgenic plants and their progeny.-Plant mol. Biol. Rep. 7: 116–128, 1989.Google Scholar
  30. Lench, N.J., Norris, A., Bailey, A., Booth, A., Markham, A.F.: Vectorette PCR isolation of microsatellite repeat sequences using anchored dinucleotide repeat primers.-Nucleic Acids Res. 24: 2190–2191, 1996.Google Scholar
  31. Lincoln, S.E., Daly, M.J., Lander, E.S.: PRIMER Version 0.5: A Computer Program for Automatically Selecting PCR Primers.-Whitehead Institute, Cambridge 1991.Google Scholar
  32. Litt, M., Luty, J.A.: A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle action gene.-Amer. J. hum. Genet. 44: 391–401, 1989.Google Scholar
  33. Lucretti, S., Doležel, J., Schubert, I., Fuchs, J.: Flow karyotyping and sorting of Vicia faba chromosomes.-Theor. appl. Genet. 85: 665–672, 1993.Google Scholar
  34. Lunt, D.H., Hutchinson, W.F., Carvalho, G.R.: An efficient method for PCR-based isolation of microsatellite arrays (PIMA).-Mol. Ecol. 8: 891–893, 1999.Google Scholar
  35. Lyall, J.E.W., Brown, G.M., Furlong, R.A., Ferguson-Smith, M.A., Affara, N.A.: A method for creating chromosome-specific plasmid libraries enriched in clones containing [CA]n microsatellite repeat sequences directly from flow-sorted chromosomes.-Nucleic Acids Res. 19: 4641–4642, 1993.Google Scholar
  36. Macas, J., Doležel, J., Lucretti, S., Pich, U., Meister, A., Fuchs, J., Schubert, I.: Localization of seed protein genes on flow-sorted field bean chromosomes.-Chromosome Res. 1: 107–115, 1993.Google Scholar
  37. Macas, J., Gualberti, G., Nouzová, M., Samec, P., Lucretti, S., Doležel, J.: Construction of chromosome-specific DNA libraries covering the whole genome of field bean (Vicia faba L.).-Chromosome Res. 4: 531–539, 1996.Google Scholar
  38. Morgante, M., Olivieri, A.M.: PCR-amplified microsatellites as markers in plant genetics.-Plant J. 1: 175–182, 1993.Google Scholar
  39. Paetkau, D.: Microsatellites obtained using strand extension: An enrichment protocol.-BioTechniques 26: 690–697, 1999.Google Scholar
  40. Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence comparison.-Proc. nat. Acad. Sci. USA 85: 2444–2448, 1988.Google Scholar
  41. Pfeiffer, A., Olivieri, A.M., Morgante, M.: Identification and characterization of microsatellites in Norway spruce (Picea abies K.).-Genome 40: 411–419, 1997.Google Scholar
  42. Ponce, M.R., Robles, P., Micol, J.L.: High-throughput genetic mapping in Arabidopsis thaliana.-Mol. gen. Genet. 261: 408–415, 1999.Google Scholar
  43. Powell, W., Machray, G.C., Provan, J.: Polymorphism revealed by simple sequence repeats.-Trends Plant Sci. 1: 215–222, 1996.Google Scholar
  44. Saal, B., Wricke, G.: Development of simple sequence repeat markers in rye (Secale cereale L.).-Genome 42: 964–972, 1999.Google Scholar
  45. Sanger, F., Nicklen, D., Coulson, A.R.: DNA sequencing with chain terminating inhibitors.-Proc. nat. Acad. Sci. USA 74: 5463–5467, 1977.Google Scholar
  46. Satovic, Z., Torres, A.M., Cubero, J.I.: Genetic mapping of new morphological, isozyme and RAPD markers in Vicia faba L. using trisomics.-Theor. appl. Genet. 93: 1130–1138, 1996.Google Scholar
  47. Schubert, I., Rieger, R., Michaelis, A.: Structural and numerical manipulation of the Vicia faba karyotype: results and perspectives.-Biol. Zentralbl. 105: 9–17, 1986.Google Scholar
  48. Smulders, M.J.M., Bredemeijer, G., Rus-Kortekaas, W., Arens, P., Vosman, B.: Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species.-Theor. appl. Genet. 97: 264–272, 1997.Google Scholar
  49. Tautz, D., Renz, M.: Simple sequences are ubiquitous repetitive components of eukaryotic genomes.-Nucleic Acids Res. 12: 4127–4138, 1984.Google Scholar
  50. Telenius, H., Carter, N.P., Bebb, C.E., Nordenskjold, M., Ponder, B.A.J., Tunnacliffe, A.: Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer.-Genomics 13: 718–725, 1992.Google Scholar
  51. Torres, A.M., Weeden, N.F., Martin, A.: Linkage among isozyme, RFLP and RAPD markers in Vicia faba.-Theor. appl. Genet. 85: 937–945, 1993.Google Scholar
  52. Torres, A.M., Satovic, Z., Canovas, J., Cobos, S., Cubero, J.I.: Genetics and mapping of new isozyme loci in Vicia faba L. using trisomics.-Theor. appl. Genet. 91: 783–789, 1995.Google Scholar
  53. Torres, A.M., Vaz Patto, M.C., Satovic, Z., Cubero, J.I.: New isozyme loci in faba bean (Vicia faba L.): Genetic analysis and mapping using trisomics.-J. Hered. 89: 271–272, 1998.Google Scholar
  54. Vaiman, D., Pailhoux, E., Schmitz, A., Giraud-Delville, C., Cotinot, C., Cribiu, E.P.: Mass production of genetic markers from a limited number of sorted chromosomes.-Mammal. Genome 8: 153–156, 1997.Google Scholar
  55. Van Dilla, M.A., Deaven, L.L.: Construction of gene libraries for each human chromosome.-Cytometry 11: 208–218, 1990.Google Scholar
  56. Vaz Patto, M.C., Torres, A.M., Koblížková, A., Macas, J., Cubero, J.I.: Development of a genetic composite map of Vicia faba using F2 populations derived from trisomic plants.-Theor. appl. Genet. 98: 736–743, 1999.Google Scholar
  57. Wang, M.L., Leitch, A.R., Schwarzacher, T., Heslop-Harrison, J.S., Moore, G.: Construction of a chromosome-enriched HpaII library from flow-sorted wheat chromosomes.-Nucleic Acids Res. 20: 1897–1901, 1992.Google Scholar
  58. Wang, Z., Weber, J.L., Zhong, G., Tanksley, S.D.: Survey of plant short tandem DNA repeats.-Theor. appl. Genet. 88: 1–6, 1994.Google Scholar
  59. Wu, K.S., Tanksley, S.D.: Abundance, polymorphism and genetic mapping of microsatellites in rice.-Mol. gen. Genet. 241: 225–235, 1993.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • D. Požárková
    • 1
  • A. Koblížková
    • 1
  • B. Román
    • 2
  • A.M. Torres
    • 2
  • S. Lucretti
    • 3
  • M. Lysák
    • 4
  • J. Doležel
    • 4
  • J. Macas
    • 5
  1. 1.Institute of Plant Molecular BiologyASCRČeské BudějoviceCzech Republic
  2. 2.Departamento de Mejora y AgronomíaC.I.F.A.CórdobaSpain
  3. 3.Biotechnology and Agriculture DivisionENEA C.R. CasacciaRomeItaly
  4. 4.Institute of Experimental BotanyASCROlomoucCzech Republic
  5. 5.Institute of Plant Moelcular BiologyASCRČeské BudějoviceCzech Republic

Personalised recommendations