Letters in Peptide Science

, Volume 8, Issue 3–5, pp 221–226 | Cite as

Determinants of miniprotein stability: can anything replace a buried H-bonded Trp sidechain?

Article

Abstract

A novel 20-residue fold, designated the `Trp-cage' motif, hasbeen shown to be 98+% folded in both water and 30 vol-%trifluoroethanol solution. Folding is cooperative andhydrophobically driven, resulting in the burial of the Trpsidechain and a stable H-bond from the Trp-εNH to a sequenceremote backbone carbonyl. In the present study the effects ofreplacing the Trp with His, Phe and both isomers of β-naphthylalanine are examined. The results suggest that thehydrophobic cluster is a specific interaction of proline ringswith the indole ring which can be partially mimicked by anaphthalene ring. The His and Phe mutants are completelyunfolded in aqueous medium. The naphthylalanine mutants forma stable hydrophobic cluster in 30% trifluoroethanol, but areless stable in water than the native structure.

circular dichroism fold stability hydrophobic cluster miniprotein design NMR chemical shiftdeviations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McKnight, C.J., Doering, D.S., Matsudaira, P.T. and Kim, P.S., J. Mol. Bio., 260 (1996) 126.Google Scholar
  2. 2.
    Struthers, M.D., Cheng, R.P. and Imperiali, B., Science, 271 (1996) 342.Google Scholar
  3. 3.
    Dahiyat, B.I. and Mayo, S.L., Science, 278 (1997) 82.Google Scholar
  4. 4.
    Schenck, H. and Gellman, S., J. Am. Chem. Soc., 120 (1998) 4869.Google Scholar
  5. 5.
    López de la Paz, M., Lacroix, E., Ramírez-Alvarado, M. and Serrano, L., J. Mol. Bio., 312 (2001) 229.Google Scholar
  6. 6.
    Neidigh, J.W., Fesinmeyer, R.M., Prickett, K.S. and Andersen, N.H., Biochemistry, 40 (2001) 13188.Google Scholar
  7. 7.
    Neidigh, J.W., Fesinmeyer, R.M. and Andersen, N.H., Nat. Struct. Biol., 9 (2002) 425.Google Scholar
  8. 8.
    Andersen, N.H., Fesinmeyer, R. Matthew, Neidigh, Jonathan W., Barua, B., in Peptides 2000 (Martinez, J., Fehrentz, Jean-Alain, Ed.) EDK, Paris, France, 2001, pp. 45–46.Google Scholar
  9. 9.
    Markley, J.L., Bax, A., Arata, Y., Hilbers, C.W., Kaptein, R., Sykes, B.D., Wright, P.E. and Wuthrich, K., Pure and Applied Chemistry, 70 (1998) 117.Google Scholar
  10. 10.
    Andersen, N.H., Brodsky, Y., Neidigh, J.W. and Prickett, K.S., Bioorg. Med. Chem., 10 (2002) 79.Google Scholar
  11. 11.
    Wüthrich, K., NMR of Proteins and Nucleic Acids, J. Wiley & Sons, New York, 1986.Google Scholar
  12. 12.
    Andersen, N.H., Neidigh, J.W., Harris, S.M., Lee, G.M., Liu, Z. and Tong, H., J. Am. Chem. Soc., 119 (1997) 8547.Google Scholar
  13. 13.
    Chakrabartty, A., Kortemme, T., Padmanabhan, S. and Baldwin, R.L., Biochemistry, 32 (1993) 5560.Google Scholar
  14. 14.
    Andersen, N.H. and Tong, H., Protein Sci., 6 (1997) 1920.Google Scholar
  15. 15.
    Brahms, S. and Brahms, J., J. Mol. Bio., 138 (1980) 149.Google Scholar
  16. 16.
    Andersen, N.H., Harris, S.M., Lee, V.G., Liu, E.C.-K., Moreland, S. and Hunt, J.T., Biorganic & Medicinal Chemistry, 3 (1995) 113.Google Scholar
  17. 17.
    Andersen, N.H., Dyer, R.B., Fesinmeyer, R.M., Gai, F., Liu, Z., Neidigh, J.W. and Tong, H., J. Am. Chem. Soc., 121 (1999) 9879.Google Scholar
  18. 18.
    Li, X., Sutcliffe, M.J., Schwartz, T.W. and Dobson, C.M., Biochemistry, 31 (1992) 1245.Google Scholar
  19. 19.
    Jager, M., Nguyen, H., Crane, J.C., Kelly, J.W. and Gruebele, M., J. Mol. Bio., 311 (2001) 373.Google Scholar
  20. 20.
    Cochran, A.G., Skelton, N.J. and Starovasnik, M.A., Proc. Natl. Acad. Sci. U.S.A., 98 (2001) 5578.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of WashingtonSeattleUSA

Personalised recommendations