Advertisement

Pharmaceutical Research

, Volume 12, Issue 5, pp 663–668 | Cite as

Prolonged Blood Circulation in Rats of Nanospheres Surface-Modified with Semitelechelic Poly[N-(2-Hydroxypropyl)methacrylamide]

  • Shigeru Kamei
  • Jindřich Kopeček
Article

Abstract

Semitelechelic poly[N-(2-hydroxypropyl)methacrylamide]s (ST-PHPMA) containing one amino end-group and differing in molecular weight were synthesized by radical polymerization in the presence of 2-aminoethanethiol (AET) as chain transfer agent. These polymers were covalently attached via amide bonds to the surface of nanospheres based on a copolymer of methyl methacrylate, maleic anhydride, and methacrylic acid. When compared to unmodified nanospheres, those with the surface modified with ST-PHPMA possessed a decreased protein (albumin, IgG, fibrinogen) adsorption in vitro, an increased intravascular half-life as well as a decreased accumulation in the liver after intravenous administration into rats. The higher the molecular weight of the ST-PHPMA, the more pronounced the changes in these properties. The results obtained have clearly demonstrated that covalently attached ST-PHPMA chains are efficient in decreasing the biorecognition of negatively charged (hydrophilic) polymer surfaces.

semitelechelic poly[N-(2-hydroxypropyl)methacrylamide] nanospheres surface modification prolonged blood circulation avoidance of RES 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    R. Arshady. Microspheres for biomedical applications: preparation of reactive and labeled microspheres. Biomaterials 14:5–15 (1993).Google Scholar
  2. 2.
    J. J. Wright and L. Illum. Active targeting of microcapsules and microspheres to specific regions. In M. Donbrow (ed.), Microcapsules and nanoparticles in medicine and pharmacy, CRC Press, Boca Raton, 1992. pp. 281–297.Google Scholar
  3. 3.
    P. Couvreur, E. Fattal, and A. Andremont. Liposomes and nanoparticles in the treatment of intracellular bacterial infections. Pharm. Res. 8:1079–1086 (1991).Google Scholar
  4. 4.
    L. Illum, I. M. Hunneyball, and S. S. Davis. The effect of hydrophilic coatings on the uptake of colloidal particles by the liver and peritoneal macrophages. Int. J. Pharm. 29:53–65 (1986).Google Scholar
  5. 5.
    B. G. Müller and T. Kissel. Camouflage nanospheres: a new approach to bypassing phagocytic blood clearance by surface modified particulate carriers. Pharm. Pharmacol. Lett. 3:67–70 (1993).Google Scholar
  6. 6.
    J. S. Tan, D. E. Butterfield, C. L. Voycheck, K. D. Caldwell, and J. T. Li. Surface modification of nanoparticles by PEO/PPO block copolymers to minimize interactions with blood components and prolong blood circulation in rats. Biomaterials 14:823–833 (1993).Google Scholar
  7. 7.
    D. Leu, B. Manthey, J. Kreuter, P. Speiser, and P. P. DeLuca. Distribution and elimination of coated polymethyl [2-14C]-methacrylate nanospheres after intravenous injection in rats. J. Pharm. Sci. 73:1433–1437 (1984).Google Scholar
  8. 8.
    S. D. Tröster and J. Kreuter. Influence of the surface properties of low contact angle surfactants on the body distribution of 14C-poly(methyl methacrylate) nanoparticles. J. Microencaps. 9:19–28 (1992).Google Scholar
  9. 9.
    D. Papahadjopoulos, T. Allen, A. Garbizon, E. Mayhew, K. Matthay, S. K. Huang, K.-D. Lee, M. C. Woodle, D. D. Lasic, C. Redemann, F. J. Martin. Sterically stabilized liposomes: improvements in pharmacokinetics, and anti-tumor therapeutic efficacy. Proc. Natl. Acad. Sci. U.S.A. 88:11460–11464 (1991).Google Scholar
  10. 10.
    F. Fuertges and A. Abuchowski. The clinical efficacy of poly-(ethylene glycol)-modified proteins. J. Controlled Rel. 11:139–148 (1990).Google Scholar
  11. 11.
    J. H. Lee, P. Kopečková, J. Kopeček, and J. D. Andrade. Surface properties of copolymers of alkyl methacrylates with methoxy (polyethylene oxide) methacrylates and their application as protein-resistant coatings. Biomaterials 11:455–464 (1990).Google Scholar
  12. 12.
    M. J. Poznansky, M. Shandling, M. A. Salkie, J. Elliott, and E. Lau. Advantages in the use of L-asparaginase-albumin polymer as an antitumor agent. Cancer Res. 42:1020–1025 (1982).Google Scholar
  13. 13.
    V. Chytrý, J. Kopeček, P. Sikk, R. Sinijärv, and A. Aaviksaar. A convenient model system for the study of the influence of water-soluble polymer carriers on the interaction between protein. Makromol. Chem. Rapid Commun. 3:11–15 (1982).Google Scholar
  14. 14.
    A. Lääne, A. Aaviksaar, M. Haga, V. Chytrý, and J. Kopeček. Preparation of polymer-modified enzymes of prolonged circulation times. Poly[N-(2-hydroxypropyl)methacrylamide]-bound acetylcholinesterase. Makromol. Chem. Suppl. 9:35–42 (1985).Google Scholar
  15. 15.
    J. Kopeček and H. Bažilová. Poly[N-(2-hydroxypropyl)-methacrylamide]. I. Radical polymerization and copolymerization. Eur. Polym. J. 9:7–14 (1973).Google Scholar
  16. 16.
    S. L. Snyder and P. Z. Sobocinski. An improved 2,4,6-trinitrobenzenesulfonic acid method for the determination of amines. Anal. Biochem. 64:284–288 (1975).Google Scholar
  17. 17.
    M. Okubo, Y. Yamamoto, M. Uno, S. Kamei, and T. Matsumoto. Immunoactivity of polymer microspheres with their hydrophobic/hydrophilic heterogeneous surface sensitized with an antibody. Colloid Polym. Sci. 265:1061–1066 (1987) and references therein.Google Scholar
  18. 18.
    Č. Koňák, R. C. Rathi, P. Kopečková, and J. Kopeček. Effect of side-chains on solution properties of N-(2-hydroxypropyl)-methacrylamide copolymers in aqueous solvents. Polymer 34:4767–4773 (1993).Google Scholar
  19. 19.
    H. J. Baker, J. R. Lindsey, and S. H. Weisbroth. Selected normative data. In H. J. Baker, J. R. Lindsey, and S. H. Weisbroth (eds.), The Laboratory Rat, Academic Press, New York, 1979. pp. 412–413.Google Scholar
  20. 20.
    T. Okano, M. Katayama, I. Shinohara. The influence of hydrophilic and hydrophobic domains on water wettability of 2-hydroxyethyl methacrylate-styrene copolymers. J. Appl. Polym. Sci. 22:369–377 (1978).Google Scholar
  21. 21.
    Y. G. Takei, T. Aoki, K. Sanui, N. Ogata, T. Okano, and Y. Sakurai. Temperature-responsive bioconjugates. 1. Synthesis of temperature-responsive oligomers with reactive end groups and their coupling to biomolecules. Bioconjugate Chem. 4:42–46 (1993).Google Scholar
  22. 22.
    L. Illum, L. O. Jacobsen, R. H. Müller, E. Mak, and S. S. Davis. Surface characteristics and the interaction of colloidal particles with mouse peritoneal macrophages. Biomaterials 8:113–117 (1987).Google Scholar
  23. 23.
    K. P. Antonsen and A. S. Hoffman. Water structure of PEG solutions by differential scanning calorimetry measurements. In J. M. Harris (ed.), Poly(ethylene glycol) chemistry. Biotechnical and biomedical applications, Plenum Press, New York, 1992. pp. 15–28.Google Scholar
  24. 24.
    M. Bohdanecký, H. Bažilová, and J. Kopeček, Poly[N-(2-hydroxypropyl)methacrylamide]. II. Hydrodynamic properties of dilute solutions. Eur. Polym. J. 10:405–410 (1974).Google Scholar
  25. 25.
    W. R. Gombotz, W. Guanghui, T. A. Horbett, and A. S. Hoffman. Protein adsorption and elution from polyether surfaces. In J. M. Harris (ed.), Poly(ethylene glycol) chemistry. Biotechnical and biomedical applications, Plenum Press, New York, 1992. pp. 247–261.Google Scholar
  26. 26.
    G. R. Llanos and M. V. Sefton. Does polyethylene oxide possess a low thrombogenicity? J. Biomater. Sci. Polym. Ed. 4:381–400 (1993).Google Scholar
  27. 27.
    S. E. Dunn, A. Brindley, S. S. Davis, M. C. Davies, and L. Illum. Polystyrene-poly(ethylene glycol) (PS-PEG2000) particles as model systems for site specific drug delivery. 2. The effect of PEG surface density on the in vitro cell interaction and in vivo biodistribution. Pharm. Res. 11:1016–1022 (1994).Google Scholar
  28. 28.
    D. Putnam and J. Kopeček. Polymer conjugates with anticancer activity. Adv. Polym. Sci. 122:55–123 (1995).Google Scholar
  29. 29.
    R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer. Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603 (1994).Google Scholar
  30. 30.
    A. M. Le Ray, M. Vert, J. C. Gautier, and J. P. Benoit. Fate of [14C]poly-(DL-lactide-co-glycolide) nanoparticles after intravenous and oral administration to mice. Int. J. Pharm. 106:201–211 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Shigeru Kamei
    • 1
  • Jindřich Kopeček
    • 1
  1. 1.Department of Pharmaceutics and Pharmaceutical Chemistry/CCCDUniversity of UtahSalt Lake City

Personalised recommendations