Pharmaceutical Research

, Volume 12, Issue 6, pp 807–816 | Cite as

Human Insulin Receptor Monoclonal Antibody Undergoes High Affinity Binding to Human Brain Capillaries in Vitro and Rapid Transcytosis Through the Blood–Brain Barrier in Vivo in the Primate

  • William M. Pardridge
  • Young-Sook Kang
  • Jody L. Buciak
  • Jing Yang


Purpose. The ability of monoclonal antibodies against the human insulin receptor to undergo transcytosis through the blood-brain barrier (BBB) was examined in the present studies.

Methods. Two murine monoclonal antibodies (MAb83-7 and MAb83-14) which bind different epitopes within the α-subunit of the human insulin receptor were examined using isolated human brain capillaries, frozen sections of primate brain, and in vivo pharmacokinetic studies in anesthetized Rhesus monkeys.

Results. Both antibodies strongly illuminated capillary endothelium in immunocytochemical analysis of frozen sections of brain from Rhesus monkey but not squirrel monkey. Both monoclonal antibodies, in the iodinated forms, bound to human brain microvessels, although the binding and endocytosis of MAb83-14 was approximately 10-fold greater than MAb83-7. The active binding of MAb83-14 to the human insulin receptor was paralleled by a very high rate of transport of this antibody through the BBB in vivo in two anesthetized Rhesus monkeys. The BBB permeability-surface area (PS) product in neocortical gray matter was 5.4 ± 0.6 µL/min/g, which is severalfold greater than previous estimates of the PS product for receptor-specific monoclonal antibody transport through the BBB. The brain delivery of MAb83-14 to the Rhesus monkey brain was high and 3.8 ± 0.4% of the injected dose was delivered to 100 g of brain at 3 hours after a single intravenous injection. In contrast, there was no brain uptake of the mouse IgG2a isotype control antibody.

Conclusions. These studies demonstrate an unexpected high degree of transcytosis of a monoclonal antibody through the primate BBB in vivo.

blood–brain barrier BBB transcytosis insulin receptor drug delivery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brightman, M. W. Morphology of blood-brain interfaces. Exp. Eye Res. 25: 1–25, (1977).Google Scholar
  2. 2.
    Pardridge, W. M. Peptide Drug Delivery to the Brain. Raven Press/New York, 1–357, (1991).Google Scholar
  3. 3.
    Kumagai, A. K., J. Eisenberg, and W. M. Pardridge. Absorptive-mediated endocytosis of cationized albumin and a β-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport. J. Biol. Chem. 262: 15214–15219, (1987).Google Scholar
  4. 4.
    Friden, P. M., L. R. Walus, G. F. Musso, M. A. Taylor, B. Malfroy, and R. M. Starzyk. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier. Proc. Natl. Acad. Sci. USA 88: 4771–4775, (1991).Google Scholar
  5. 5.
    Pardridge, W. M., J. L. Buciak, and P. M. Friden. Selective transport of anti-transferrin receptor antibody through the blood-brain barrier in vivo. J. Pharmacol. Exp. Ther. 259: 66–70, (1991).Google Scholar
  6. 6.
    Bickel, U., T. Yoshikawa, E. M. Landaw, K. F. Faull, and W. M. Pardridge. Pharmacologic effects in vivo in brain by vector-mediated peptide drug delivery. Proc. Natl. Acad. Sci. USA 90: 2618–2622, (1993).Google Scholar
  7. 7.
    Friden, P. M., L. R. Walus, P. Watson, S. R. Doctrow, J. W. Kozarich, C. Backman, H. Bergman, B. Hoffer, F. Bloom, and A-C. Granholm. Blood-brain barrier penetration and in vivo activity of an NGF conjugate. Science 259: 373–377, (1993).Google Scholar
  8. 8.
    Jefferies, W. A., M. R. Brandon, S. V. Hunt, A. F. WIlliams, K. C. Gatter, and D. Y. Mason. Transferrin receptor on endothelium of brain capillaries. Nature 312: 162–163, (1984).Google Scholar
  9. 9.
    Fishman, J. B., J. B. Rubin, J. V. Handrahan, J. R. Connor, and R. E. Fine. Receptor-mediated transcytosis of transferrin across the blood-brain barrier. J. Neurosci. Res. 18: 199–304, (1987).Google Scholar
  10. 10.
    Pardridge, W. M., J. Eisenberg, and J. Yang. Human blood-brain barrier transferrin receptor. Metabolism 36: 892–895, (1987).Google Scholar
  11. 11.
    Jefferies, W. A., M. R. Brandon, A. F. Williams, and S. V. Hunt. Analysis of lymphopoietic stem cells with a monoclonal antibody to the rat transferrin receptor. Immunology 54: 333–341, (1985).Google Scholar
  12. 12.
    Pardridge, W. M., J. Eisenberg, and J. Yang. Human blood-brain barrier insulin receptor. J. Neurochem. 44: 1771–1778, (1985).Google Scholar
  13. 13.
    Duffy, K. R., and W. M. Pardridge. Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res. 420: 32–38, (1987).Google Scholar
  14. 14.
    Prigent, S. A., K. K. Stanley, and K. Siddle. Identification of epitopes on the human insulin receptor reacting with rabbit polyclonal antisera and mouse monoclonal antibodies. J. Biol. Chem. 265: 9970–9977, (1990).Google Scholar
  15. 15.
    Soos, M. A., K. Siddle, M. D. Baron, J. M. Heward, J. P. Luzio, J. Bellatin, and E. S. Lennox. Monoclonal antibodies reacting with multiple epitopes on the human insulin receptor. Biochem. J. 235: 199–208, (1986).Google Scholar
  16. 16.
    Yoshikawa, T., and W. M. Pardridge. Biotin delivery to brain with a covalent conjugate of avidin and a monoclonal antibody to the transferrin receptor. J. Pharmacol. Exp. Ther. 263: 897–903, (1992).Google Scholar
  17. 17.
    Pardridge, W. M., J. L. Buciak, and T. Yoshikawa. Transport of recombinant CD4 through the rat blood-brain barrier. J. Pharmacol. Exp. Ther. 261: 1175–1180, (1992).Google Scholar
  18. 18.
    Triguero, D., J. B. Buciak, and W. M. Pardridge. Capillary depletion method for quantifying blood-brain barrier transcytosis of circulating peptides and plasma proteins. J. Neurochem. 54: 1882–1888, (1990).Google Scholar
  19. 19.
    Gibaldi, M. and D. Perrier. Pharmacokinetics. Marcel Dekker, Inc./New York, (1982).Google Scholar
  20. 20.
    Hsu, S., L. Raine, and H. Fanger. A comparative study of the peroxidase method and an avidin-biotin complex method for studying polypeptide hormone with radioimmunoassay antibodies. Am. J. Clin. Pathol. 75: 734–738, (1981).Google Scholar
  21. 21.
    Soos, M. A., R. M. O'Brien, N. P. J. Brindle, J. M. Stigter, A. K. Okamoto, J. Whittaker, and K. Siddle. Monoclonal antibodies to the insulin receptor mimic metabolic effects of insulin but do not stimulate receptor autophosphorylation in transfected NIH 3T3 fibroblasts. Proc. Natl. Acad. Sci. USA 86: 5217–5221, (1989).Google Scholar
  22. 22.
    Swindler, D. R., and J. Erwin, editors. Comparative Primate Biology, vol. 1 (Systematics, Evolution, and Anatomy). Alan R. Liss, Inc./New York, (1986).Google Scholar
  23. 23.
    Pardridge, W. M., J. Yang, J. Buciak, and W. W. Tourtellotte. Human brain microvascular DR antigen. J. Neurosci. Res. 23: 337–341, (1989).Google Scholar
  24. 24.
    Paccaud, J.-P., K. Siddle, and J.-L. Carpentier. Internalization of the human insulin receptor. The insulin-dependent pathway. J. Biol. Chem. 267: 13101–13106, (1992).Google Scholar
  25. 25.
    Sung, C. K., K. Y. Wong, C. C. Yip, D. M. Hawley, and I. D. Goldfine. Deletion of residues 485–599 from the human insulin receptor abolishes antireceptor antibody binding and influences tyrosine kinase activation. Molec. Endocrinol. 8: 315–324, (1993).Google Scholar
  26. 26.
    Kurose, T., M. Pashmforoush, Y. Yoshimasa, R. Carroll, G. P. Schwartz, G. T. Burke, P. G. Katsoyannis, and D. F. Steiner. Cross-linking of a B25 azidophenylalanine insulin derivative to the carboxyl-terminal region of the α-subunit of the insulin receptor. J. Biol. Chem. 269: 29190–29197, (1994).Google Scholar
  27. 27.
    Vorbrodt, A. W., Dobrogowska, D. H., and Lossinsky, A. S. Ultrastructural study on the interaction of insulin-albumin-gold complex with mouse brain microvascular endothelial cells. J. Neurocytol. 201–208, (1994).Google Scholar
  28. 28.
    Lierse, W., and E. Horstmann. Quantitative anatomy of the cerebral vascular bed with especial emphasis on homogeneity and inhomogeneity in small parts of the gray and white matter. Acta Neurol. 14: 15–19, (1959).Google Scholar
  29. 29.
    Baskin, D. G., B. Brewitt, D. A. Davidson, E. Corp, T. Paquette, D. P. Filgewicz, T. K. Lewellen, M. K. Graham, S. G. Woods, and D. M. Dorsa. Quantitative autoradiographic evidence for insulin receptors in the choroid plexus of the rat brain. Diabetes 35: 246–249, (1986).Google Scholar
  30. 30.
    Woods, S. C., and D. Porte, Jr. Relationship between plasma and cerebrospinal fluid insulin levels in dogs. Am. J. Physiol. 233: E331–E334, (1977).Google Scholar
  31. 31.
    Poduslo, J. F., G. L. Curran, and C. T. Berg. Macromolecular permeability across the blood-nerve and blood-brain barriers. Proc. Natl. Acad. Sci. USA 91: 5705–5709, (1994).Google Scholar
  32. 32.
    Kang, Y.-S., and W. M. Pardridge. Use of neutral-avidin improves pharmacokinetics and brain delivery of biotin bound to an avidin-monoclonal antibody conjugate. J. Pharmacol. Exp. Ther. 269: 344–350, (1994).Google Scholar
  33. 33.
    Bourne, G. H. The Rhesus Monkey, Vol. 1 (Anatomy and Physiology). Academic Press/New York, 6–10, (1975).Google Scholar
  34. 34.
    Kang, Y.-S., U. Bickel, and W. M. Pardridge. Pharmacokinetics and saturable blood-brain barrier transport of biotin bound to a conjugate of avidin and a monoclonal antibody to the transferrin receptor. Drug Metab. Disp. 22: 99–105, (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • William M. Pardridge
    • 1
  • Young-Sook Kang
    • 1
  • Jody L. Buciak
    • 1
  • Jing Yang
    • 1
  1. 1.Department of Medicine and Brain Research InstituteUCLA School of MedicineLos Angeles

Personalised recommendations