Advertisement

Environmental Fluid Mechanics

, Volume 2, Issue 1–2, pp 65–94 | Cite as

A Multidisciplinary Study of Spatial and Temporal Scales Containing Information in Turbulent Chemical Plume Tracking

  • M.J. Weissburg
  • D.B. Dusenbery
  • H. Ishida
  • J. Janata
  • T. Keller
  • P.J.W. Roberts
  • D.R. Webster
Article

Abstract

This report describes the results of a multidisciplinary study of turbulent chemical plume tracking of blue crabs and autonomous agents. The study consists of a coordinated investigation of animal behavior, fluid mechanics, strategy simulations, and chemical sensing. The objective is to provide a comprehensive understanding of chemical plume tracking in a single biological system and to prescribe strategies that are effective for autonomous agents. The consensus of the study is that spatial variation in the plume, measured by sampling at multiple locations simultaneously, yields information that is useful for plume tracking. Behavioral investigations reveal that blue crabs demonstrate the ability to detect the chemical plume and use lateral movements to avoid losing contact with the odor. Blue crabs move rapidly towards the source, strongly suggesting that temporal comparisons of odor properties are not employed during navigation. Analysis of the concentration fields reveals that a spatial correlation between spanwise-separated sensors indicates the relative direction of the plume centerline over short time periods provided the sensor spacing is scaled appropriately relative to the plume. Similarly, simulations of tracking strategies reveal an optimal separation for the sensors at a distance roughly equal to the plume width; both smaller and larger sensor spans degrade tracking performance. The simulations further reveal an optimal sensor size above which the fine details of the concentration distribution are obscured and below which there is insufficient contact with the odor to enable effective navigation. Finally, analysis of the chemical signal shows that the frequency dependent correlation function between two (or more) sensors indicates the relative position of the source.

Keywords

Tracking Performance Autonomous Agent Blue Crab Dependent Correlation Temporal Comparison 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weissburg, M.J.: 2000, The fluid dynamical context of chemosensory behavior, Biol. Bull. 198, 188–202.Google Scholar
  2. 2.
    Vickers, N.J.: 2000, Mechanisms of animal navigation in odor plumes, Biol. Bull. 198, 203–212.Google Scholar
  3. 3.
    Moin P. and Kim, J.: 1997, Tackling turbulence with supercomputers, Sci. Am. 276, 62–68.Google Scholar
  4. 4.
    Dusenbery D.B.: 1998, Spatial sensing of stimulus gradients can be superior to temporal sensing for free-swimming bacteria, Biophys. J. 74, 2272–2277.Google Scholar
  5. 5.
    Dusenbery D.B.: 1998, Fitness landscapes for effects of shape on chemotaxis and other behaviors in bacteria, J. Bacteriol. 180, 5978–5983.Google Scholar
  6. 6.
    Gleeson, R.A.: 1982, Morphological and behavioral identification of the sensory structures mediating pheromone reception in the blue crab, Callinectes sapidus, Biol. Bull. 163, 162–171.Google Scholar
  7. 7.
    Moore, P.A., Scholz, N. and Atema, J.: 1991, Chemical orientation of lobsters, Homarus americanus in turbulent odor plumes, J. Chem. Ecol. 17, 1293–1307.Google Scholar
  8. 8.
    Weissburg, M.J. and Zimmer-Faust, R.K.: 1994, Odor plumes and how blue crabs use them to find prey, J. Exp. Biol. 197, 349–375.Google Scholar
  9. 9.
    Weissburg, M.J. and Zimmer-Faust, R.K.: 1993, Life and death in moving fluids: Hydrodynamic effects on chemosensory-mediated predation, Ecology 74, 1428–1443.Google Scholar
  10. 10.
    Finelli, C.M., Pentcheff, N.D., Zimmer-Faust, R.K. and Wethey, D.S.: 1999, Odor transport in turbulent flows: Constraints on animal navigation, Limnol. Oceanog. 44, 1056–1071.Google Scholar
  11. 11.
    Moore, P.A. and Grills, J.L.: 1999, Chemical orientation to food by the crayfish, Orconectes rusticus, influence of hydrodynamics, Anim. Behav. 58, 953–963.Google Scholar
  12. 12.
    Wright, L.D.: 1989, Benthic boundary layer flows of estuarine and coastal environments, Rev. Aquat. Sci. 1, 75–89.Google Scholar
  13. 13.
    Schmidt, M. and Gnatzy, W.: 1989, Specificity and response characteristics of gustatory sensilla (funnel-canal organs) on the dactyls of the shore crab, Carcinus maenas (Crustacea, Decapoda), J. Comp. Physiol. A 166, 227–242.Google Scholar
  14. 14.
    Webster, D.R. and Weissburg, M.J.: 2001, Chemosensory guidance cues in a turbulent odor plume, Limnol. Oceanogr. 46, 1048–1053.Google Scholar
  15. 15.
    Laurent, G. and Davidowitz, H.: 1994. Encoding of olfactory information with oscillating neural assemblies, Science 265, 1872–1875.Google Scholar
  16. 16.
    Derby, C.D. and Atema, J.: 1985, Chemoreceptor cells in aquatic invertebrates: Peripheral mechanisms of signal processing in decapod crustaceans. In: J. Atema, R.R. Fay, A.N. Popper, and W.N. Tavolga (eds.), Sensory Biology of Aquatic Animals, Springer-Verlag.Google Scholar
  17. 17.
    Ferrier, A.J., Funk, D.R. and Roberts, P.J.W.: 1993, Application of optical techniques to the study of plumes in stratified fluids, Dyn. Atmos. Oceans 20, 155–183.Google Scholar
  18. 18.
    Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J. and Brooks, N.H.: 1979, Mixing in Inland and Coastal Waters, Academic Press.Google Scholar
  19. 19.
    Dusenbery, D.B.: 2001, Performance of basic strategies for following gradients in two dimensions, J. Theor. Biol. 208, 345–360.Google Scholar
  20. 20.
    Kikas, T., Ishida, H., Roberts, P., Webster, D. and Janata, J.: 2000, Virtual plume, Electroanalysis 12, 974–979.Google Scholar
  21. 21.
    Kikas, T., Webster, D., Ishida, H. and Janata, J.: 2001, Chemical plume tracking, Part I: Chemical information encoding, Anal. Chem. 73, 3662–3668.Google Scholar
  22. 22.
    Kikas, T., Ishida, H., Janata, P. and Janata, J.: 2001, Chemical plume tracking, Part II: Frequency modulation, Anal. Chem. 73, 3669–3673.Google Scholar
  23. 23.
    Zimmer-Faust, R.K, Finelli, C.M., Pentcheff, N.D. and Wethey, D.S.: 1995. Odor plumes and animal navigation in turbulent water flow. A field study, Biol. Bull. 188, 111–116.Google Scholar
  24. 24.
    Atema, J.: 1996, Eddy chemotaxis and odor landscapes: Exploration of nature with animal sensors, Biol. Bull. 191, 129–138.Google Scholar
  25. 25.
    Gomez, G. and Atema, J.: 1996, Temporal resolution in olfaction I: stimulus integration time of lobster chemoreceptor cells, J. Exp. Biol. 199, 1771–1779.Google Scholar
  26. 26.
    Webster, D.R., Rahman, S. and Dasi, L.P.: 2001, On the usefulness of bilateral comparison to tracking turbulent chemical odor plumes, Limnol. Oceanogr. 46, 1048–1053.Google Scholar
  27. 27.
    Grasso, F.W., Basil, J. and Atema, J.: 1998, Towards the convergence: robot and lobster perspectives of tracking odors to their source in a turbulent marine environment, Proceeding 1998 IEEE Conference, Gaithersburg, MD.Google Scholar
  28. 28.
    Dusenbery, D.: 1992, Sensory Ecology, W.H. Freeman, New York.Google Scholar
  29. 29.
    Grasso, F.W., Dale, J.H., Consi, T.R., Mountain, D.C. and Atema, J.: 1996, Behavior of purely chemotactic robot lobster reveals different odor dispersal patterns in the jet region and the patch field of a turbulent plume, Biol. Bull. 191, 312–313.Google Scholar
  30. 30.
    Grasso, F.W., Dale, J.H., Consi, T.R., Mountain, D.C. and Atema, J.: 1997, Effectiveness of continuous bilateral sampling for robot chemotaxis in a turbulent odor plume: implications for lobster chemo-orientation, Biol. Bull. 193, 215–216.Google Scholar
  31. 31.
    Grasso, F.W., Consi, T.R., Mountain, D.C. and Atema, J.: 1999, Biomimetic robot lobster performs chemo-orientation in turbulence using a pair of spatially separated sensors: Progress and challenges, Robot. Autonom. Syst. 807, 1–17.Google Scholar
  32. 32.
    Spencer, M.: 1986, The innervation and chemical sensitivity of single aesthetasc hairs, J. Comp. Physiol. 158, 59–68.Google Scholar
  33. 33.
    White, F.M.: 1991, Viscous Fluid Flow, 2nd edn., McGraw Hill, New York.Google Scholar
  34. 34.
    Ishida, H., Nakamoto, T., Moriizumi, T., Kikas, T. and Janata, J.: 2001, Plume-tracking robots: a new application of chemical sensors, Biol. Bull. 200, 222–226.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • M.J. Weissburg
    • 1
  • D.B. Dusenbery
    • 1
  • H. Ishida
    • 2
  • J. Janata
    • 3
  • T. Keller
    • 1
  • P.J.W. Roberts
    • 4
    • 5
  • D.R. Webster
    • 5
  1. 1.School of BiologyTokyo Institute of TechnologyTokyoJapan
  2. 2.Department of Physical ElectronicsTokyo Institute of TechnologyTokyoJapan
  3. 3.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaU.S.A
  4. 4.School of Civil and Environmental EngineeringUSA
  5. 5.Georgia Institute of TechnologyAtlantaU.S.A

Personalised recommendations