Geometriae Dedicata

, Volume 91, Issue 1, pp 137–154 | Cite as

Hyperbolic Manifolds, Harmonic Forms, and Seiberg–Witten Invariants

  • Claude LeBrun


New estimates are derived concerning the behavior of self-dual harmonic 2-forms on a compact Riemannian 4-manifold with nontrivial Seiberg–Witten invariants. Applications include a vanishing theorem for certain Seiberg–Witten invariants on compact 4-manifolds of constant negative sectional curvature.

anti-self-dual Einstein Seiberg–Witten harmonic 2-form 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armstrong, J.: On four-dimensional almost Kähler manifolds, Quart. J. Math. Oxford Ser. (2) 48 (1997), 405-415.Google Scholar
  2. 2.
    Bär, C.: On nodal sets for Dirac and Laplace operators, Comm. Math. Phys. 188 (1997), 709-721.Google Scholar
  3. 3.
    Besson, G., Courtois, G. and Gallot, S.: Volume et entropie minimale des espaces localement symétriques, Invent. Math. 103 (1991), 417-445.Google Scholar
  4. 4.
    Bourguignon, J.-P.: Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d'Einstein, Invent. Math. 63 (1981), 263-286.Google Scholar
  5. 5.
    Calderbank, D. M. J., Gauduchon, P. and Herzlich, M.: Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal. 73 (2000), 214-255.Google Scholar
  6. 6.
    Gursky, M. J.: Four-manifolds with δW +=0 and Einstein constants of the sphere, Math. Ann. 318 (2000), 417-431.Google Scholar
  7. 7.
    Hitchin, N.: On compact four-dimensional Einstein manifolds, J. Differential Geom. 9 (1974), 435-442.Google Scholar
  8. 8.
    LeBrun, C.: Yamabe constants and the perturbed Seiberg-Witten equations, Comm. Anal. Geom. 5 (1997), 535-553.Google Scholar
  9. 9.
    LeBrun, C.: Ricci curvature, minimal volumes, and Seiberg-Witten theory, Invent.Math. 145 (2001), 279-316.Google Scholar
  10. 10.
    Ozsváth, P. and Szabó, Z.: Higher type adjunction inequalities in Seiberg-Witten theory, J. Differential Geom. 55 (2000), 385-440.Google Scholar
  11. 11.
    Singer, I. M. and Thorpe, J. A.: The curvature of 4-dimensional Einstein spaces, In: Global Analysis (Papers in honor of K. Kodaira), Univ. Tokyo Press, 1969, pp. 355-365.Google Scholar
  12. 12.
    Taubes, C. H.: The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994), 809-822.Google Scholar
  13. 13.
    Taubes, C. H.: The Seiberg-Witten and Gromov invariants, Math. Res. Lett. 2 (1995), 221-238.Google Scholar
  14. 14.
    Witten, E.: Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), 809-822.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Claude LeBrun
    • 1
  1. 1.Department of MathematicsSUNY Stony BrookU.S.A.

Personalised recommendations