Pharmaceutical Research

, Volume 12, Issue 3, pp 413–420

A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and in Vivo Bioavailability

  • Gordon L. Amidon
  • Hans Lennernäs
  • Vinod P. Shah
  • John R. Crison
Article

Abstract

A biopharmaceutics drug classification scheme for correlating in vitro drug product dissolution and in vivo bioavailability is proposed based on recognizing that drug dissolution and gastrointestinal permeability are the fundamental parameters controlling rate and extent of drug absorption. This analysis uses a transport model and human permeability results for estimating invivo drug absorption to illustrate the primary importance of solubility and permeability on drug absorption. The fundamental parameters which define oral drug absorption in humans resulting from this analysis are discussed and used as a basis for this classification scheme. These Biopharmaceutic Drug Classes are defined as: Case 1. High solubility-high permeability drugs, Case 2. Low solubility-high permeability drugs, Case 3. High solubility-low permeability drugs, and Case 4. Low solubility-low permeability drugs. Based on this classification scheme, suggestions are made for setting standards for in vitro drug dissolution testing methodology which will correlate with the in vivo process. This methodology must be based on the physiological and physical chemical properties controlling drug absorption. This analysis points out conditions under which noin vitro-in vivo correlation may be expected e.g. rapidly dissolving low permeability drugs. Furthermore, it is suggested for example that for very rapidly dissolving high solubility drugs, e.g. 85% dissolution in less than 15 minutes, a simple one point dissolution test, is all that may be needed to insure bioavailability. For slowly dissolving drugs a dissolution profile is required with multiple time points in systems which would include low pH, physiological pH, and surfactants and the in vitro conditions should mimic the in vivo processes. This classification scheme provides a basis for establishing in vitro-in vivo correlations and for estimating the absorption of drugs based on the fundamental dissolution and permeability properties of physiologic importance.

bioavailability drug absorption mathematical modeling in vitro–in vivo correlation intestinal permeability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    N.F.H. Ho, H.P. Merkle, and W.I. Higuchi. Quantitative, Mechanistic and Physiologically Realistic Approach to the Biopharmaceutical Design of Oral Drug Delivery Systems. Drug Dev. and Ind. Pharm. 9:1111–1184 (1983).Google Scholar
  2. 2.
    P.J. Sinko, G.D. Leesman, and G.L. Amidon, Predicting fraction dose absorbed in humans using a macroscopic mass balance approach, Pharm. Res., 8:979–988 (1991).Google Scholar
  3. 3.
    D-M Oh, R.L. Curl, and G.L. Amidon. Estimating the Fraction Dose Absorbed From Suspensions of Poorly Soluble Compounds in Humans: A Mathematical Model. Pharm. Res. 10:264–270 (1993)Google Scholar
  4. 4.
    J.B. Dressman and D. Fleisher. Mixing-tank Model for Predicting Dissolution Rate Control of Oral Absorption. J. Pharm. Sci. 75:109–116 (1986).Google Scholar
  5. 5.
    R.B. Hintz and K.C. Johnson. The Effect of Particle Size Distribution on Dissolution and Oral Absorption. Int J Pharm, 51:9–17 (1989).Google Scholar
  6. 6.
    G.D. Leesman, R.L. Oberle, G.L. Amidon, The Use of Error Functions in Characterizing Gastric Emptying in Humans, Pharm Res, 8:S-254 (1991).Google Scholar
  7. 7.
    R.L. Oberle, The Influence of the Interdigestive Migrating Myoelectric Complex on the Gastric Emptying of Liquids and Oral Absorption of Cimetidine, Ph.D. Thesis, The University of Michigan, Ann Arbor, MI (1988).Google Scholar
  8. 8.
    R.L. Oberle, and G.L. Amidon, The influence of variable gastric emptying and intestineal transit rates on the plasma level curve of cimetidine; an explaination for the double peak phenomenon, J Pharmacok Biopharm, 15:529 (1987).Google Scholar
  9. 9.
    R.L. Oberle, T-S Chen, C. lloyd, J.L. Barnett, C. Owyang, J. Meyer, G.L. Amidon, The Influence of the Interdigestive Migrating Myoelectrc Complex on the Gastric Emptying of Liquids. Gastroenterology, 99:1275–1282 (1990).Google Scholar
  10. 10.
    P.J. Sinko, G.D. Leesman, and G.L. Amidon, Mass Balance Approaches for Estimating the Intestinal Absorption and Metabolism of Peptides and Analogues: Theoretical Development and Applications, Pharm. Res. 10:271–275 (1993).Google Scholar
  11. 11.
    G.L. Amidon, P.J. Sinko, D. Fleisher, Estimating human oral fraction dose absorbed: A correlation using rat intestinal membrane permeability for passive and carrier-mediated compounds, Pharm. Res. 5:651–654 (1988).Google Scholar
  12. 12.
    D-M Oh, Estimating Oral Drug Absorption in Humans, Ph.D. Thesis. The University of Michigan, Ann Arbor, MI. (1991).Google Scholar
  13. 13.
    J.R. Crison. Estimating the Dissolution and Absorption of Water Insoluble Drugs in the Small Intestine. Ph.D. Thesis, The University of Michigan, Ann Arbor, MI. (1993).Google Scholar
  14. 14.
    E.L. Cussler, Diffusion, Mass transfer in fluid systems, Cambridge University Press, NY (1986).Google Scholar
  15. 15.
    H. Lennernas, O. Ahrenstedt, R. Hallgren, L. Knutson, M. Ryde, L.K. Paalzow, Regional Jejunal Perfusion, A New in Vivo Approach to Study Oral Drug Absorption in Man, Pharm Res, 9:1243–1255 (1992).Google Scholar
  16. 16.
    J.B. Dressman, D. Fleisher, and G.L. Amidon. Physicochemical Model for Dose-Dependent Drug Absorption, J Pharm Sci, 73: 1274 (1984).Google Scholar
  17. 17.
    E.M. Topp, Physiological Flow Models for Intestinal Absorption and Plasma Kinetics of Aspirin, Thesis, The University of Michigan (1986).Google Scholar
  18. 18.
    G.D. Leesman, P.J. Sinko, and G.L. Amidon, Simulation of Oral Drug Absorption: Gastric Emptying and Gastrointestinal Motility, in: Pharmacokinetics, P.W. Welling and F.L.S. Tse, Editors, Marcel Dekker, Inc., (NY) 1988, Ch 6, p 267.Google Scholar
  19. 19.
    P.F. Ni, N.F.H. Ho, J.L. Fox, H. Leuenberger, and W.I. Higuchi. Theoretical Model Studies of Intestinal Drug Absorption V. Non-Steady-State Fluid Flow and Absorption. Int. J. Pharm., 5:33–47 (1980).Google Scholar
  20. 20.
    G.L. Amidon, J. Kou, R.L. Elliott, and E.N. Lightfoot, Analysis of Models for Determining Intestinal Wall Permeabilities, J Pharm Sci, 69: 1370 (1980).Google Scholar
  21. 21.
    J.H. Kou, D. Fleisher, and G.L. Amidon, Calculation of the aqueous diffusion layer resistence for absorption in a tube: application to intestinal membrane permeability determination, Pharm Res, 8:298 (1991).Google Scholar
  22. 22.
    V.G. Levich, Physico-Chemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, NJ (1962).Google Scholar
  23. 23.
    H. Lennernäs, Intestinal Absorption Characteristics of Three Model Drugs, Thesis, The University of Uppsala, Sweden (1992).Google Scholar
  24. 24.
    U. Fagerholm, L. Borgström, Ö. Ahrenstedt, H. Lenneräs, The lack of effect of induced net fluid absorption on the in vivo permeability of terbutaline in the human jejunum. J. Drug Targeting. In press (1995).Google Scholar
  25. 25.
    H. Lenneräs, D. Nilsson, S-M. Aquilonius, O. Ahrenstedt, L. Knutson, L.K. Paalzow, The effect of L-leucine on the absorption of levodopa, studied by regional jejunal perfusion in man. Br. J. Clin. Pharmacol., 35:243–250 (1993).Google Scholar
  26. 26.
    H. Lenneräs, Ö. Ahrenstedt, A-L. Ungell, Intestinal drug absorption during induced net water absorption in man; A mechanistic study using antipyrine, atenolol, and enalaprilat. Br. J. Clin. Pharmacol., 37:589–596 (1994).Google Scholar
  27. 27.
    A.J. Jounela, P.J. Pentikainen, A. Sothman, Effect of Particle Size on the Bioavailability of Digoxin, Europ J clin Pharmacol, 8:365–370 (1975).Google Scholar
  28. 28.
    M. Kraml, J. Dubuc, R. Gaudry, Gastrointestinal Absorption of Griseofulvin: II. Influence of Particle Size in Man, Antibiotics and Chemotherapy, 12:239–242 (1962).Google Scholar
  29. 29.
    H.M. Abdou, Dissolution, Bioavailability, & Bioequivalence, A. Gennaro, B. Migdalof, G.L. Hassert and T. Medwick (Eds), Mack Publishing Co., Easton PA (1989).Google Scholar
  30. 30.
    V.P. Shah, J.J. Konecny, R.L. Everett, B. McCullough, A.C. Noorizadeh, J.P. Skelly, In Vitro Dissolution Profile of Water-Insoluble Drug Dosage Forms in the Presence of Surfactacts, Pharm Res., 6:612:618 (1989).Google Scholar
  31. 31.
    P.E. Macheras, M.A. Koupparis and S.G. Antimisiaris. Effect of Temperature and Fat Content on the Solubility of Hydrochlorothiazide and Chlorothiazide im Milk. J. Pharm. Sci., 78:933–936 (1989).Google Scholar
  32. 32.
    The Merck Index, Tenth Edition, Merck & Co., Inc., Rahway, NJ (1983).Google Scholar
  33. 33.
    S.S. Davis, J.G. Hardy and J.W. Fara, Transit of Pharmaceutical Dosage Forms Through the Small Intestine, Gut, 27:886–892 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Gordon L. Amidon
    • 1
  • Hans Lennernäs
    • 2
  • Vinod P. Shah
    • 3
  • John R. Crison
    • 4
  1. 1.College of PharmacyThe University of MichiganAnn Arbor
  2. 2.School of PharmacyUppsala UniversitySweden
  3. 3.PDA, HFD-602Rockville
  4. 4.TSRL, Inc.Ann Arbor

Personalised recommendations