Pharmaceutical Research

, Volume 19, Issue 6, pp 715–728

Recent Advances in Vaccine Adjuvants

Article

Abstract

New generation vaccines, particularly those based on recombinant proteins and DNA, are likely to be less reactogenic than traditional vaccines but are also less immunogenic. Therefore, there is an urgent need for the development of new and improved vaccine adjuvants. Adjuvants can be broadly separated into two classes based on their principal mechanisms of action: vaccine delivery systems and immunostimulatory adjuvants. Vaccine-delivery systems generally are particulate (e.g., emulsions, microparticles, iscoms, and liposomes)and function mainly to target associated antigens into antigen-resenting cells. In contrast, immunostimulatory adjuvants are derived predominantly from pathogens and often represent pathogen-ssociated molecular patterns (e.g., lipopolysaccaride, monophosphoryl lipid A, CpG DNA), which activate cells of the innate immune system. Recent progress in innate immunity is beginning to yield insight into the initiation of immune responses and the ways in which immunostimulatory adjuvants may enhance this process. The discovery of more potent adjuvants may allow the development of prophylactic and therapeutic vaccines against cancers and chronic infectious diseases. In addition, new adjuvants may also allow vaccines to be delivered mucosally.

vaccine adjuvants immunostimulators vaccine delivery systems microparticles emulsions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Seder and S. Gurunathan. DNA vaccines-designer vaccines for the 21st century. N. Engl. J. Med. 341:277–278 (1999).Google Scholar
  2. 2.
    R. Wang, D. L. Doolan, T. P. Le, R. C. Hedstrom, K. M. Coonan, Y. Charoenvit, T. R. Jones, P. Hobart, M. Margalith, J. Ng, W. R. Weiss, J. Sedegah, C. de Taisne, J. A. Norman, and S. L. Hoffman. Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science 282:476–480 (1998).Google Scholar
  3. 3.
    S. Calarota, G. Bratt, S. Nordlund, J. Hinkula, A. C. Leandersson, E. Sandstrom, and B. Wahren. Cellular cytotoxic response induced by DNA vaccination in HIV-1-infected patients. Lancet 351:1320–1325 (1998).Google Scholar
  4. 4.
    J. Schneider, S. C. Gilbert, T. J. Blanchard, T. Hanke, K. J. Robson, C. M. Hannan, M. Becker, R. Sinden, G. L. Smith, and A. V. Hill. Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat. Med. 4:397–402 (1998).Google Scholar
  5. 5.
    N. J. Sullivan, A. Sanchez, P. E. Rollin, Z. Y. Yang, and G. J. Nabel. Development of a preventive vaccine for Ebola virus infection in primates. Nature 408:605–609 (2000).Google Scholar
  6. 6.
    R. R. Amara, F. Villinger, J. D. Altman, S. L. Lydy, S. P. O'Neil, S. I. Staprans, D. C. Montefiori, Y. Xu, J. G. Herndon, L. S. Wyatt, M. A. Candido, N. L. Kozyr, P. L. Earl, J. M. Smith, H. L. Ma, B. D. Grimm, M. L. Hulsey, J. Miller, H. M. McClure, J. M. McNicholl, B. Moss, and H. L. Robinson. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 292:69–74 (2001).Google Scholar
  7. 7.
    G. Ramon. Sur la toxine et surranatoxine diphtheriques. Ann. Inst. Pasteur 38:1–7 (1924).Google Scholar
  8. 8.
    F. R. Vogel and M. F. Powell. A compendium of vaccine adjuvants and excipients. In M. F. Powell and M. J. Newman (eds.), Vaccine Design: The Subunit and Adjuvant Approach Plenum Press, New York, 1995 pp. 141–228.Google Scholar
  9. 9.
    R. K. Gupta. Aluminum compounds as vaccine adjuvants. Adv. Drug Deliv. Rev. 32:155–172 (1998).Google Scholar
  10. 10.
    E. H. Relyveld, B. Bizzini, and R. K. Gupta. Rational approaches to reduce adverse reactions in man to vaccines containing tetanus and diphtheria toxoids. Vaccine 16:1016–1023 (1998).Google Scholar
  11. 11.
    R. K. Gupta, A. C. Chang, P. Griffin, R. Rivera, and G. R. Siber. In vivo distribution of radioactivity in mice after injection of biodegradable polymer microspheres containing 14C-labeled tetanus toxoid. Vaccine 14:1412–1416 (1996).Google Scholar
  12. 12.
    M. Ulanova, A. Tarkowski, M. Hahn-Zoric, L. A. Hanson, and P. Moingeon. The common vaccine adjuvant aluminum hydroxide up-regulates accessory properties of human monocytes via an interleukin-4-dependent mechanism. Infect. Immunol. 69:1151–1159 (2001).Google Scholar
  13. 13.
    Y. Shi. H. HogenEsch, F. E. Regnier, and S. L. Hem. Detoxification of endotoxin by aluminum hydroxide adjuvant. Vaccine 19:1747–1752 (2001).Google Scholar
  14. 14.
    R. Edelman. Adjuvants for the future. In M. M. Levine, G. C. Woodrow, J. B. Kaper, and G. S. Cobon (eds.), New Generation Vaccines Marcel Dekker, Inc., New York, 1997 pp. 173–192.Google Scholar
  15. 15.
    R. M. Zinkernagel, S. Ehl, P. Aichele, S. Oehen, T. Kundig, and H. Hengartner. Antigen localisation regulates immune responses in a dose-and time-dependent fashion: a geographical view of immune reactivity. Immunol. Rev. 156:199–209 (1997).Google Scholar
  16. 16.
    P. Bretscher and M. Cohn. A theory of self-nonself discrimination. Science 169:1042–1049 (1970).Google Scholar
  17. 17.
    C. A. Janeway, Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor Symp. on Quant. Biol. 54 Pt 1 C:1–13 (1989).Google Scholar
  18. 18.
    R. Medzhitov and C. A. Janeway, Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91:295–298 (1997).Google Scholar
  19. 19.
    P. Matzinger. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12:991–1045 (1994).Google Scholar
  20. 20.
    P. Matzinger. An innate sense of danger. Semin. Immunol. 10:399–415 (1998).Google Scholar
  21. 21.
    Y. Shi, W. Zheng, K. L. Rock, H. HogenEsch, F. E. Regnier, and S. L. Hem. Cell injury releases endogenous adjuvants that stimulate cytotoxic T cell responses. Proc. Natl. Acad. Sci. USA 97:14590–14595 (2000).Google Scholar
  22. 22.
    D. T. Fearon. Seeking wisdom in innate immunity. Nature 388:323–324 (1997).Google Scholar
  23. 23.
    D. T. Fearon and R. M. Locksley. The instructive role of innate immunity in the acquired immune response. Science 272:50–53 (1996).Google Scholar
  24. 24.
    H. C. Yip, A. Y. Karulin, M. Tary-Lehmann, M. D. Hesse, H. Radeke, P. S. Heeger, R. P. Trezza, F. P. Heinzel, T. Forsthuber, and P. V. Lehmann. Adjuvant-guided type-1 and type-2 immunity: infectious/noninfectious dichotomy defines the class of response. J. Immunol. 162:3942–3949 (1999).Google Scholar
  25. 25.
    G. L. Gustafson and M. J. Rhodes. Bacterial cell wall products as adjuvants: early interferon gamma as a marker for adjuvants that enhance protective immunity. Res. Immunol. 143:483–488 (1992).Google Scholar
  26. 26.
    J. T. Ulrich and K. R. Myers. Monophosphoryl lipid A as an adjuvant: Past experiences and new directions. Pharm. Biotechnol. 6:495–524 (1995).Google Scholar
  27. 27.
    J. T. Ulrich. MPLr immunostimulant: adjuvant formulations. In D. T. O'Hagan (ed.), Vaccine Adjuvants: Preparation Methods and Research Protocols. Humana Press Inc., Totowa, New Jersey, 2000 pp. 273–282.Google Scholar
  28. 28.
    S. Thoelen, P. Van Damme, C. Mathei, G. Leroux-Roels, I. Desombere, A. Safary, P. Vandepapeliere, M. Slaoui, and A. Meheus. Safety and immunogenicity of a hepatitis B vaccine formulated with a novel adjuvant system. Vaccine 16:708–714 (1998).Google Scholar
  29. 29.
    A. W. Wheeler, J. S. Marshall, and J. T. Ulrich. A Th1-inducing adjuvant, enhances antibody profiles in experimental animals suggesting it has the potential to improve the efficacy of allergy vaccines. Int. Arch. Allergy Immunol. 126:135–139 (2001).Google Scholar
  30. 30.
    D. A. Johnson, D. S. Keegan, C. G. Sowell, M. T. Livesay, C. L. Johnson, L. M. Taubner, A. Harris, K. R. Myers, J. D. Thompson, G. L. Gustafson, M. J. Rhodes, J. T. Ulrich, J. R. Ward, Y. M. Yorgensen, J. L. Cantrell, V. G. Brookshire, and P. Moingeon. 3-O-Desacyl monophosphoryl lipid A derivatives: synthesis and immunostimulant activities. J. Med. Chem. 42:4640–4649 (1999).Google Scholar
  31. 31.
    L. D. Hawkins, S. T. Ishizaka, P. McGuinness, H. Zhang, W. Gavin, B. DeCosta, Z. Meng, H. Yang, M. Mullarkey, D. W. Young, D. P. Rossignol, A. Nault, J. Rose, M. Przetak, J. C. Chow, and F. Gusovsky. A novel class of endotoxin receptor agonists with simplified structure, toll-like receptor 4-dependent immunostimulatory action, and adjuvant activity. J. Pharmacol. Exp. Ther. 300:655–661 (2002).Google Scholar
  32. 32.
    S. Sasaki, T. Tsuji, K. Hamajima, J. Fukushima, N. Ishii, T. Kaneko, K. Q. Xin, H. Mohri, I. Aoki, T. Okubo, K. Nishioka, and K. Okuda. Monophosphoryl lipid A enhances both humoral and cell-mediated immune responses to DNA vaccination against human immunodeficiency virus type 1. Infect. Immunol. 65:3520–3528 (1997).Google Scholar
  33. 33.
    N. K. Childers, K. L. Miller, G. Tong, J. C. Llarena, T. Greenway, J. T. Ulrich, S. M. Michalek, and P. Moingeon. Adjuvant activity of monophosphoryl lipid A for nasal and oral immunization with soluble or liposome-associated antigen. Infect. Immunol. 68:5509–5516 (2000).Google Scholar
  34. 34.
    J. P. Messina, G. S. Gilkeson, and D. S. Pisetsky. Stimulation of in vitro murine lymphocyte proliferation by bacterial DNA. J. Immunol. 147:1759–1764 (1991).Google Scholar
  35. 35.
    T. Tokunaga, H. Yamamoto, S. Shimada, H. Abe, T. Fukuda, Y. Fujisawa, Y. Furutani, O. Yano, T. Kataoka, and T. Sudo. Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity. Infection and Immunity 72:955–962 (1984).Google Scholar
  36. 36.
    A. M. Krieg, A. K. Yi, S. Matson, T. J. Waldschmidt, G. A. Bishop, R. Teasdale, G. A. Koretzky, and D. M. Klinman. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546–549 (1995).Google Scholar
  37. 37.
    A. P. Bird. CpG islands as gene markers in the vertebrate nucleus. Trends Genet. 3:342–347 (1987).Google Scholar
  38. 38.
    H. Hemmi, O. Takeuchi, T. Kawai, T. Kaisho, S. Sato, H. Sanjo, M. Matsumoto, K. Hoshino, H. Wagner, K. Takeda, S. Akira, and P. Moingeon. A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745 (2000).Google Scholar
  39. 39.
    T. Sparwasser, E. S. Koch, R. M. Vabulas, K. Heeg, G. B. Lipford, J. W. Ellwart, and H. Wagner. Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur. J. Immunol. 28:2045–2054 (1998).Google Scholar
  40. 40.
    D. M. Klinman, K. M. Barnhart, and J. Conover. CpG motifs as immune adjuvants. Vaccine 17:19–25 (1999).Google Scholar
  41. 41.
    M. Singh, G. Ott, J. Kazzaz, M. Ugozzoli, M. Briones, J. Donnelly, and D. T. O'Hagan. Cationic microparticles are an effective delivery system for immune stimulatory CpG DNA. Pharm. Res. 18:1476–1479 (2001).Google Scholar
  42. 42.
    D. Broide, J. Schwarze, H. Tighe, T. Gifford, M. D. Nguyen, S. Malek, J. Van Uden, E. Martin-Orozco, E. W. Gelfand, and E. Raz. Immunostimulatory DNA sequences inhibit IL-5, eosinophilic inflammation, and airway hyperresponsiveness in mice. J. Immunol. 161:7054–7062 (1998).Google Scholar
  43. 43.
    G. Hartmann, R. D. Weeratna, Z. K. Ballas, P. Payette, S. Blackwell, I. Suparto, W. L. Rasmussen, M. Waldschmidt, D. Sajuthi, R. H. Purcell, H. L. Davis, and A. M. Krieg. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J. Immunol. 164:1617–1624 (2000).Google Scholar
  44. 44.
    C. R. Kensil. Saponins as vaccine adjuvants. Crit. Rev. Ther. Drug Carrier Syst. 13:1–55 (1996).Google Scholar
  45. 45.
    A. M. Glaueri, J. T. Dingle, and J. A. Lucy. Action of saponins on biologic membranes. Nature 196:953–959 (1962).Google Scholar
  46. 46.
    C. R. Kensil and R. Kammer. QS-21: a water-soluble triterpene glycoside adjuvant. Exp. Opin. Invest. Drugs 7:1475–1482 (1998).Google Scholar
  47. 47.
    T. G. Evans, M. J. McElrath, T. Matthews, D. Montefiori, K. Weinhold, M. Wolff, M. C. Keefer, E. G. Kallas, L. Corey, G. J. Gorse, R. Belshe, B. S. Graham, P. W. Spearman, D. Schwartz, M. J. Mulligan, P. Goepfert, P. Fast, P. Berman, M. Powell, D. Francis, M. L. Clements-Mann, N. Verani-Ketter, S. Erb, C. M. Smith, R. B. Belshe, L. J. Wagner, D. H. Schwartz, and P. Moingeon. QS-21 promotes an adjuvant effect allowing for reduced antigen dose during HIV-1 envelope subunit immmunization in humans. Vaccine 19:2080–2091 (2001).Google Scholar
  48. 48.
    D. C. Waite, E. W. Jacobson, F. A. Ennis, R. Edelman, B. White, R. Kammer, C. Anderson, and C. R. Kensil. Three double-blind, randomized trials evaluating the safety and tolerance of different formulations of the saponin adjuvant QS-21. Vaccine 19:3957–3967 (2001).Google Scholar
  49. 49.
    S. Sasaki, K. Sumino, K. Hamajima, J. Fukushima, N. Ishii, S. Kawamoto, H. Mohri, C. R. Kensil, and K. Okuda. Induction of systemic and mucosal immune responses to human immunodeficiency virus type 1 by a DNA vaccine formulated with QS-21 saponin adjuvant via intramuscular and intranasal routes. J. Virol. 72:4931–4939 (1998).Google Scholar
  50. 50.
    A. W. Heath. Cytokines as immunologic adjuvants. In M. F. Powell and M. J. Newman, (eds.), Vaccine Design: The Subunit and Adjuvant Approach Plenum Press, New York, 1995 pp. 645–658.Google Scholar
  51. 51.
    M. L. Salgaller and P. A. Lodge. Use of cellular and cytokine adjuvants in the immunotherapy of cancer. J. Surg. Oncol. 68:122–138 (1998).Google Scholar
  52. 52.
    A. C. Allison and N. E. Byars. An adjuvant formulation that selectively elicits the formation of antibodies of protective isotypes and of cell-mediated immunity. J. Immunol. Methods 95:157–168 (1986).Google Scholar
  53. 53.
    E. B. Lindblad. Freund's Adjuvants. In D. O'Hagan (ed.), Vaccine Adjuvants: Preparation methods and research protocols Humana Press, Totowa, New Jersey, 2000 pp. 49–64.Google Scholar
  54. 54.
    G. Ott, G. L. Barchfeld, D. Chernoff, R. Radhakrishnan, P. van Hoogevest, and G. Van Nest. MF59: Design and evaluation of a safe and potent adjuvant for human vaccines. In M. F. Powell and M. J. Newman (eds.), Vaccine Design: The Subunit and Adjuvant Approach. Plenum Press, New York, 1995 pp. 277–296.Google Scholar
  55. 55.
    D. M. Cataldo and G. Van Nest. The adjuvant MF59 increases the immunogenicity and protective efficacy of subunit influenza vaccine in mice. Vaccine 15:1710–1715 (1997).Google Scholar
  56. 56.
    D. A. Higgins, J. R. Carlson, and G. Van Nest. MF59 adjuvant enhances the immunogenicity of influenza vaccine in both young and old mice. Vaccine 14:478–484 (1996).Google Scholar
  57. 57.
    D. T. O'Hagan, G. S. Ott, and G. Van Nest. Recent advances in vaccine adjuvants: the development of MF59 emulsion and polymeric microparticles. Mol. Med. Today 3:69–75 (1997).Google Scholar
  58. 58.
    P. Traquina, M. Morandi, M. Contorni, and G. Van Nest. MF59 adjuvant enhances the antibody response to recombinant hepatitis B surface antigen vaccine in primates. J. Infect. Dis. 174:1168–1175 (1996).Google Scholar
  59. 59.
    T. Menegon, V. Baldo, C. Bonello, C. D. Dalla, A. Di Tommaso, and R. Trivello. Influenza vaccines: antibody responses to split virus and MF59-adjuvanted subunit virus in an adult population. Eur. J. Epidemiol. 15:573–576 (1999).Google Scholar
  60. 60.
    S. De Donato, D. Granoff, M. Minutello, G. Lecchi, M. Faccini, M. Agnello, F. Senatore, P. Verweij, B. Fritzell, and A. Podda. Safety and immunogenicity of MF59-adjuvanted influenza vaccine in the elderly. Vaccine 17:3094–3101 (1999).Google Scholar
  61. 61.
    J. Nicholson. Trade systems in less-developed countries. Lancet 357:1624–1627 (2001).Google Scholar
  62. 62.
    T. C. Heineman, M. L. Clements-Mann, G. A. Poland, R. M. Jacobson, A. E. Izu, D. Sakamoto, J. Eiden, G. A. Van Nest, and H. H. Hsu. A randomized, controlled study in adults of the immunogenicity of a novel hepatitis B vaccine containing MF59 adjuvant. Vaccine 17:2769–2778 (1999).Google Scholar
  63. 63.
    D. M. Granoff, Y. E. McHugh, H. V. Raff, A. S. Mokatrin, and G. A. Van Nest. MF59 adjuvant enhances antibody responses of infant baboons immunized with Haemophilus influenzae type b and Neisseria meningitidis group C oligosaccharide-CRM197 conjugate vaccine. Infect. Immunol. 65:1710–1715 (1997).Google Scholar
  64. 64.
    R. F. Pass, A. M. Duliege, S. Boppana, R. Sekulovich, S. Percell, W. Britt, and R. L. Burke. A subunit cytomegalovirus vaccine based on recombinant envelope glycoprotein B and a new adjuvant. J. Infect. Dis. 180:970–975 (1999).Google Scholar
  65. 65.
    S. Nitayaphan, C. Khamboonruang, N. Sirisophana, P. Morgan, J. Chiu, A. M. Duliege, C. Chuenchitra, T. Supapongse, K. Rungruengthanakit, M. deSouza, J. R. Mascola, K. Boggio, S. Ratto-Kim, L. E. Markowitz, D. Birx, V. Suriyanon, J. G. McNeil, A. E. Brown, R. A. Michael. A phase I/II trial of HIV SF2 gp120/ MF59 vaccine in seronegative Thais. Vaccine 18:1448–1455 (2000).Google Scholar
  66. 66.
    J. O. Kahn, F. Sinangil, J. Baenziger, N. Murcar, D. Wynne, R. L. Coleman, K. S. Steimer, C. L. Dekker, and D. Chernoff. Clinical and immunologic responses to human immunodeficiency virus (HIV) type 1SF2 gp120 subunit vaccine combined with MF59 adjuvant with or without muramyl tripeptide dipalmitoyl phosphatidylethanolamine in non-HIV-infected human volunteers. J. Infect. Dis. 170:1288–1291 (1994).Google Scholar
  67. 67.
    A. G. Langenberg, R. L. Burke, S. F. Adair, R. Sekulovich, M. Tigges, C. L. Dekker, and L. Corey. A recombinant glycoprotein vaccine for herpes simplex virus type 2: safety and immunogenicity. Ann. Intern. Med. 122:889–898 (1995).Google Scholar
  68. 68.
    C. K. Cunningham, D. W. Wara, M. Kang, T. Fenton, E. Hawkins, J. McNamara, L. Mofenson, A. M. Duliege, D. Francis, E. J. McFarland, and W. Borkowsky. Safety of 2 recombinant human immunodeficiency virus type 1 (hiv-1) envelope vaccines in neonates born to hiv-1-infected women. Clin. Infect. Dis. 32:801–807 (2001).Google Scholar
  69. 69.
    Cellular and humoral immune responses to a canarypox vaccine containing human immunodeficiency virus type 1 Env, Gag, and Pro in combination with rgp120. J. Infect. Dis. 183:563–570 (2001).Google Scholar
  70. 70.
    S. Cherpelis, I. Srivastava, A. Gettie, X. Jin, D. D. Ho, S. W. Barnett, and L. Stamatatos. DNA vaccination with the human immunodeficiency virus type 1 SF162DeltaV2 envelope elicits immune responses that offer partial protection from simian/ human immunodeficiency virus infection to CD8(+) T-cell-depleted rhesus macaques. J. Virol. 75:1547–1550 (2001).Google Scholar
  71. 71.
    I. T. Ling, S. A. Ogun, P. Momin, R. L. Richards, N. Garcon, J. Cohen, W. R. Ballou, and A. A. Holder. Immunization against the murine malaria parasite Plasmodium yoelii using a recombinant protein with adjuvants developed for clinical use. Vaccine 15:1562–1567 (1997).Google Scholar
  72. 72.
    J. A. Stoute, M. Slaoui, D. G. Heppner, P. Momin, K. E. Kester, P. Desmons, B. T. Wellde, N. Garcon, U. Krzych, and M. Marchand. A preliminary evaluation of a recombinant circum-sporozoite protein vaccine against Plasmodium falciparum malaria. RTS,S Malaria Vaccine Evaluation Group. N. Engl. J. Med. 336:86–91 (1997).Google Scholar
  73. 73.
    S. McCormack, A. Tilzey, A. Carmichael, F. Gotch, J. Kepple, A. Newberry, G. Jones, S. Lister, S. Beddows, R. Cheingsong, A. Rees, A. Babiker, J. Banatvala, C. Bruck, J. Darbyshire, D. Tyrrell, C. Van Hoecke, and J. Weber. A phase I trial in HIV negative healthy volunteers evaluating the effect of potent adjuvants on immunogenicity of a recombinant gp120W61D derived from dual tropic R5X4 HIV-1ACH320. Vaccine 18:1166–1177 (2000).Google Scholar
  74. 74.
    G. W. Lawrence, A. Saul, A. J. Giddy, R. Kemp, D. Pye, M. Ulanova, A. Tarkowski, M. Hahn-Zoric, L. A. Hanson, and P. Moingeon. Phase I trial in humans of an oil-based adjuvant SEPPIC MONTANIDE ISA 720. Vaccine 15:176–178 (1997).Google Scholar
  75. 75.
    J. Aucouturier, V. Ganne, and A. Laval. Efficacy and safety of new adjuvants. Ann. N. Y. Acad. Sci. 916:600–604 (2000).Google Scholar
  76. 76.
    A. Gringeri, E. Santagostino, M. Muca-Perja, P. M. Mannucci, J. F. Zagury, B. Bizzini, A. Lachgar, M. Carcagno, J. Rappaport, M. Criscuolo, W. Blattner, A. Burny, R. C. Gallo, and D. Zagury. Safety and immunogenicity of HIV-1 Tat toxoid in immunocompromised HIV-1-infected patients. J. Hum. Virol. 1:293–298 (1998).Google Scholar
  77. 77.
    H. Toledo, A. Baly, O. Castro, S. Resik, J. Laferte, F. Rolo, L. Navea, L. Lobaina, O. Cruz, J. Miguez, T. Serrano, B. Sierra, L. Perez, M. E. Ricardo, M. Dubed, A. L. Lubian, M. Blanco, J. C. Millan, A. Ortega, E. Iglesias, E. Penton, Z. Martin, J. Perez, M. Diaz, and C. A. Duarte. A phase I clinical trial of a multi-epitope polypeptide TAB9 combined with Montanide ISA 720 adjuvant in non-HIV-1 infected human volunteers. Vaccine 19:4328–4336 (2001).Google Scholar
  78. 78.
    B. Genton, F. Al-Yaman, R. Anders, A. Saul, G. Brown, D. Pye, D. O. Irving, W. R. Briggs, A. Mai, M. Ginny, T. Adiguma, L. Rare, A. Giddy, R. Reber-Liske, D. Stuerchler, and M. P. Alpers. Safety and immunogenicity of a three-component bloodstage malaria vaccine in adults living in an endemic area of Papua New Guinea. Vaccine 18:2504–2511 (2000).Google Scholar
  79. 79.
    C. R. Alving. Immunologic aspects of liposomes: presentation and processing of liposomal protein and phospholipid antigens. Biochim. Biophys. Acta 1113:307–322 (1992).Google Scholar
  80. 80.
    G. Gregoriadis. Immunologic adjuvants: a role for liposomes. Immunol. Today 11:89–97 (1990).Google Scholar
  81. 81.
    F. Ambrosch, G. Wiedermann, S. Jonas, B. Althaus, B. Finkel, R. Gluck, and C. Herzog. Immunogenicity and protectivity of a new liposomal hepatitis A vaccine. Vaccine 15:1209–1213 (1997).Google Scholar
  82. 82.
    D. T. Bungener, A. Huckriede, and J. Wilschut. Virosomes as an antigen delivery system. J. Liposome Res. 10:329–338 (2000).Google Scholar
  83. 83.
    L. Krishnan, C. J. Dicaire, G. B. Patel, and G. D. Sprott. Archaeosome vaccine adjuvants induce strong humoral, cell-mediated, and memory responses: comparison to conventional liposomes and alum. Infect. Immunol. 68:54–63 (2000).Google Scholar
  84. 84.
    J. W. Conlan, L. Krishnan, G. E. Willick, G. B. Patel, and G. D. Sprott. Immunization of mice with lipopeptide antigens encapsulated in novel liposomes prepared from the polar lipids of various Archaeobacteria elicits rapid and prolonged specific protective immunity against infection with the facultative intracellular pathogen, Listeria monocytogenes. Vaccine 19:3509–3517 (2001).Google Scholar
  85. 85.
    B. Guy, N. Pascal, A. Francon, A. Bonnin, S. Gimenez, E. Lafay-Vialon, E. Trannoy, and J. Haensler. Design, characterization and preclinical efficacy of a cationic lipid adjuvant for influenza split vaccine. Vaccine 19:1794–1805 (2001).Google Scholar
  86. 86.
    J. M. Muderhwa, G. R. Matyas, L. E. Spitler, and C. R. Alving. Oil-in-water liposomal emulsions: characterization and potential use in vaccine delivery. J. Pharm. Sci. 88:1332–1339 (1999).Google Scholar
  87. 87.
    S. Gould-Fogerite, M. T. Kheiri, F. Zhang, Z. Wang, A. J. Scolpino, E. Feketeova, M. Canki, and R. J. Mannino. Targeting immune response induction with cochleate and liposome-based vaccines. Adv. Drug Deliv. Rev. 32:273–287 (1998).Google Scholar
  88. 88.
    H. Chen, V. Torchilin, and R. Langer. Polymerized liposomes as potential oral vaccine carriers: stability and bioavailability. J. Control. Release 42:263–272 (1996).Google Scholar
  89. 89.
    I. G. Barr, A. Sjolander, and J. C. Cox. ISCOMs and other saponin based adjuvants. Adv. Drug Deliv. Rev. 32:247–271 (1998).Google Scholar
  90. 90.
    G. F. Rimmelzwaan, M. Baars, R. van Beek, G. van Amerongen, K. Lovgren-Bengtsson, E. C. Claas, and A. D. Osterhaus. Induction of protective immunity against influenza virus in a macaque model: comparison of conventional and iscom vaccines. Vaccine 78(Pt 4):757–765 (1997).Google Scholar
  91. 91.
    F. A. Ennis, J. Cruz, J. Jameson, M. Klein, D. Burt, and J. Thipphawong. Augmentation of human influenza A virus-specific cytotoxic T lymphocyte memory by influenza vaccine and adjuvanted carriers (ISCOMS). Virology 259:256–261 (1999).Google Scholar
  92. 92.
    S. Soltysik, J. Y. Wu, J. Recchia, D. A. Wheeler, M. J. Newman, R. T. Coughlin, and C. R. Kensil. Structure/function studies of QS-21 adjuvant: assessment of triterpene aldehyde and glucuronic acid roles in adjuvant function. Vaccine 13:1403–1410 (1995).Google Scholar
  93. 93.
    R. E. Smith, A. M. Donachie, D. Grdic, N. Lycke, and A. M. Mowat. Immune-stimulating complexes induce an IL-12-dependent cascade of innate immune responses. J. Immunol. 162:5536–5546 (1999).Google Scholar
  94. 94.
    D. L. Emery, J. S. Rothel, and P. R. Wood. Influence of antigens and adjuvants on the production of gamma-interferon and antibody by ovine lymphocytes. Immunol. Cell Biol. 68 (Pt 2):127–136 (1990).Google Scholar
  95. 95.
    E. J. Verschoor, P. Mooij, H. Oostermeijer, M. van der Kolk, P. ten Haaft, B. Verstrepen, Y. Sun, B. Morein, L. Akerblom, D. H. Fuller, S. W. Barnett, and J. L. Heeney. Comparison of immunity generated by nucleic acid-, MF59-, and ISCOM-formulated human immunodeficiency virus type 1 vaccines in Rhesus macaques: evidence for viral clearance. J. Virol. 73:3292–3300 (1999).Google Scholar
  96. 96.
    N. K. Polakos, D. Drane, J. Cox, P. Ng, M. J. Selby, D. Chien, D. T. O'Hagan, M. Houghton, and X. Paliard. Characterization of hepatitis C virus core-specific immune responses primed in rhesus macaques by a nonclassical ISCOM vaccine. J. Immunol. 166:3589–3598 (2001).Google Scholar
  97. 97.
    A. Sjolander, D. Drane, E. Maraskovsky, J. Scheerlinck, A. Suhrbier, J. Tennent, and M. Pearse. Immune responses to ISCOM((R)) formulations in animal and primate models. Vaccine 19:2661–2665 (2001).Google Scholar
  98. 98.
    J. Bates, J. Ackland, A. Coulter, J. Cox, D. Drane, R. Macfarlan, J. Varigos, T.-Y. Wong, and W. Woods. IscomT adjuvant-a promising adjuvant for influenza virus vaccines. In L. E. Brown, A. W. Hampson, and R. G. Webster (eds.), Options for the Control of Influenza III Elsevier Science B.V., Amsterdam, 1996 pp. 661–667.Google Scholar
  99. 99.
    K. Lovgren-Bengtsson and B. Morein. The ISCOMTM Technology. In D. O'Hagan (ed.), Vaccine Adjuvants: Preparation Methods and Research Protocols Humana Press, Totowa, New Jersey, 2000 pp. 239–258.Google Scholar
  100. 100.
    J. M. Brewer, L. Tetley, J. Richmond, F. Y. Liew, and J. Alexander. Lipid vesicle size determines the Th1 or Th2 response to entrapped antigen. J. Immunol. 161:4000–4007 (1998).Google Scholar
  101. 101.
    I. Tsunoda, A. Sette, R. S. Fujinami, C. Oseroff, J. Ruppert, C. Dahlberg, S. Southwood, T. Arrhenius, L. Q. Kuang, R. T. Kubo, R. W. Chesnut, and G. Y. Ishioka. Lipopeptide particles as the immunologically active component of CTL inducing vaccines. Vaccine 17:675–685 (1999).Google Scholar
  102. 102.
    D. F. Nixon, C. Hioe, P. D. Chen, Z. Bian, P. Kuebler, M. L. Li, H. Qiu, X. M. Li, M. Singh, J. Richardson, P. Mcgee, T. Zamb, W. Koff, C. Y. Wang, and D. O'Hagan. Synthetic peptides entrapped in microparticles can elicit cytotoxic T cell activity. Vaccine 14:1523–1530 (1996).Google Scholar
  103. 103.
    H. Okada and H. Toguchi. Biodegradable microspheres in drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 12:1–99 (1995).Google Scholar
  104. 104.
    S. D. Putney and P. A. Burke. Improving protein therapeutics with sustained-release formulations. Nat. Biotechnol. 16:153–157 (1998).Google Scholar
  105. 105.
    J. H. Eldridge, J. K. Staas, J. A. Meulbroek, T. R. Tice, and R. M. Gilley. Biodegradable and biocompatible poly(DL-lactideco-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies. Infect. Immunol. 59:2978–2986 (1991).Google Scholar
  106. 106.
    D. T. O'Hagan, D. Rahman, J. P. McGee, H. Jeffery, M. C. Davies, P. Williams, S. S. Davis, and S. J. Challacombe. Biodegradable microparticles as controlled release antigen delivery systems. Immunology 73:239–242 (1991).Google Scholar
  107. 107.
    D. T. O'Hagan, H. Jeffery, M. J. Roberts, J. P. McGee, and S. S. Davis. Controlled release microparticles for vaccine development. Vaccine 9:768–771 (1991).Google Scholar
  108. 108.
    D. T. O'Hagan, H. Jeffery, and S. S. Davis. Long-term antibody responses in mice following subcutaneous immunization with ovalbumin entrapped in biodegradable microparticles. Vaccine 11:965–969 (1993).Google Scholar
  109. 109.
    K. J. Maloy, A. M. Donachie, D. T. O'Hagan, and A. M. Mowat. Induction of mucosal and systemic immune responses by immu-nization with ovalbumin entrapped in poly(lactide-co-glycolide) microparticles. Immunology 81:661–667 (1994).Google Scholar
  110. 110.
    A. Moore, P. McGuirk, S. Adams, W. C. Jones, J. P. McGee, D. T. O'Hagan, and K. H. Mills. Immunization with a soluble recombinant HIV protein entrapped in biodegradable microparticles induces HIV-specific CD8+ cytotoxic T lymphocytes and CD4+ Th1 cells. Vaccine 13:1741–1749 (1995).Google Scholar
  111. 111.
    M. L. Hedley, J. Curley, and R. Urban. Microspheres containing plasmid-encoded antigens elicit cytotoxic T-cell responses. Nat. Med. 4:365–368 (1998).Google Scholar
  112. 112.
    M. Singh, M. Briones, G. Ott, and D. O'Hagan. Cationic microparticles: A potent delivery system for DNA vaccines. Proc. Natl. Acad. Sci. USA. 97:811–816 (2000).Google Scholar
  113. 113.
    M. Briones, M. Singh, M. Ugozzoli, J. Kazzaz, S. Klakamp, G. Ott, and D. O'Hagan. The preparation, characterization, and evaluation of cationic microparticles for DNA vaccine delivery. Pharm. Res. 18:709–711 (2001).Google Scholar
  114. 114.
    D. O'Hagan, M. Singh, M. Ugozzoli, C. Wild, S. Barnett, M. Chen, G. R. Otten, and J. B. Ulmer. Induction of potent immune responses by cationic microparticles with adsorbed HIV DNA vaccines. J. Virol. 75:9037–9043 (2001).Google Scholar
  115. 115.
    K. S. Denis-Mize, M. Dupuis, M. L. MacKichan, M. Singh, D. O'Hagan, J. B. Ulmer, J. Donnelly, D. MacDonald, and G. S. Ott. Plasmid DNA adsorbed onto PLG-CTAB microparticles mediates target gene expression and antigen presentation by dendritic cells. Gene Ther. 7:2105–2112 (2000).Google Scholar
  116. 116.
    J. Kazzaz, J. Neidleman, M. Singh, G. Ott, and D. T. O'Hagan. Novel anionic microparticles are a potent adjuvant for the induction of cytotoxic T lymphocytes against recombinant p55 gag from HIV-1. J. Control. Release 67:347–356 (2000).Google Scholar
  117. 117.
    D. T. O'Hagan, M. Ugozzoli, J. Barackman, M. Singh, J. Kazzaz, K. Higgins, T. C. VanCott, and G. Ott. Microparticles in MF59, a potent adjuvant combination for a recombinant protein vaccine against HIV-1. Vaccine 18:1793–1801 (2000).Google Scholar
  118. 118.
    D. T. O'Hagan. Prospects for the development of new and improved vaccines through the use of microencapsulation technology. In M. M. Levine, G. C. Woodrow, J. B. Kaper, and G. S. Cobon (eds.), New Generation Vaccines Marcel Dekker, Inc., New York, 1997 pp. 215–228.Google Scholar
  119. 119.
    D. T. O'Hagan, M. Singh, and R. K. Gupta. Poly(lactide-coglycolide) microparticles for the development of single-dose controlled-release vacccines. Adv. Drug Deliv. Rev. 32:225–246 (1998).Google Scholar
  120. 120.
    P. Johansen, F. Estevez, R. Zurbriggen, H. P. Merkle, R. Gluck, G. Corradin, and B. Gander. Towards clinical testing of a single-administration tetanus vaccine based on PLA/PLGA microspheres. Vaccine 19:1047–1054 (2000).Google Scholar
  121. 121.
    M. J. Newman, M. Balusubramanian, and C. W. Todd. Development of adjuvant-active nonionic block copolymers. Adv. Drug Deliv. Rev. 32:199–223 (1998).Google Scholar
  122. 122.
    L. G. Payne, S. A. Jenkins, A. L. Woods, E. M. Grund, W. E. Geribo, J. R. Loebelenz, A. K. Andrianov, and B. E. Roberts. Poly[di(carboxylatophenoxy)phosphazene] (PCPP) is a potent immunoadjuvant for an influenza vaccine. Vaccine 16:92–98 (1998).Google Scholar
  123. 123.
    P. Valenzuela, A. Medina, W. J. Rutter, G. Ammerer, and B. D. Hall. Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature 298:347–350 (1982).Google Scholar
  124. 124.
    R. Schirmbeck, W. Bohm, K. Ando, F. V. Chisari, and J. Reimann. Nucleic-acid vaccination primes hepatitis-b virus surface antigen-specific cytotoxic t-lymphocytes in nonresponder mice. J. Virol. 69:5929–5934 (1995).Google Scholar
  125. 125.
    S. C. Gilbert. Virus-like particles as vaccine adjuvants. In D. O'Hagan (ed.), Vaccine Adjuvants: Preparation methods and research protocols Humana Press, Totowa, New Jersey, 2000 pp. 197–210.Google Scholar
  126. 126.
    S. C. Gilbert, M. Plebanski, S. J. Harris, C. E. Allsopp, R. Thomas, G. T. Layton, and A. V. Hill. A protein particle vaccine containing multiple malaria epitopes. Nat. Biotechnol. 15:1280–1284 (1997).Google Scholar
  127. 127.
    L. S. Klavinskis, L. A. Bergmeier, L. Gao, E. Mitchell, R. G. Ward, G. Layton, R. Brookes, N. J. Meyers, and T. Lehner. Mucosal or targeted lymph node immunization of macaques with a particulate SIVp27 protein elicits virus-specific CTL in the genito-rectal mucosa and draining lymph nodes. J. Immunol. 157:2521–2527 (1996).Google Scholar
  128. 128.
    S. J. Martin, A. Vyakarnam, R. Cheingsong-Popov, D. Callow, K. L. Jones, J. M. Senior, S. E. Adams, A. J. Kingsman, P. Matear, and F. M. Gotch. Immunization of human HIV-seronegative volunteers with recombinant p17/p24:Ty virus-like particles elicits HIV-1 p24-specific cellular and humoral immune responses. AIDS 7:1315–1323 (1993).Google Scholar
  129. 129.
    M. M. Levine and G. Dougan. Optimism over vaccines administered via mucosal surfaces. Lancet 351:1375–1376 (1998).Google Scholar
  130. 130.
    S. J. Challacombe, D. Rahman, H. Jeffery, S. S. Davis, and D. T. O'Hagan. Enhanced secretory IgA and systemic IgG antibody responses after oral immunization with biodegradable microparticles containing antigen. Immunology 76:164–168 (1992).Google Scholar
  131. 131.
    S. J. Challacombe, D. Rahman, and D. T. O'Hagan. Salivary, gut, vaginal and nasal antibody responses after oral immunization with biodegradable microparticles. Vaccine 15:169–175 (1997).Google Scholar
  132. 132.
    J. H. Eldridge, C. J. Hammond, J. A. Meulbroek, J. K. Staas, R. M. Gilley, and T. R. Tice. Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer's patches. J. Control. Release 11:205–214 (1990).Google Scholar
  133. 133.
    D. T. O'Hagan. Microparticles as oral vaccines. In D. T. O'Hagan (ed.), Novel Delivery Systems for Oral Vaccines CRC Press, Inc., Boca Raton, 1994 pp. 175–205.Google Scholar
  134. 134.
    E. S. Cahill, D. T. O'Hagan, L. Illum, A. Barnard, K. H. Mills, and K. Redhead. Immune responses and protection against Bordetella pertussis infection after intranasal immunization of mice with filamentous haemagglutinin in solution or incorporated in biodegradable microparticles. Vaccine 13:455–462 (1995).Google Scholar
  135. 135.
    D. H. Jones, B. W. McBride, C. Thornton, D. T. O'Hagan, A. Robinson, and G. H. Farrar. Orally administered microencapsulated Bordetella pertussis fimbriae protect mice from B. pertussis respiratory infection. Infect. Immunol. 64:489–494 (1996).Google Scholar
  136. 136.
    R. Shahin, M. Leef, J. Eldridge, M. Hudson, and R. Gilley. Adjuvanticity and protective immunity elicited by Bordetella pertussis antigens encapsulated in poly(DL-lactide-co-glycolide) microspheres. Infect. Immunol. 63:1195–1200 (1995).Google Scholar
  137. 137.
    M. A. Conway, L. Madrigal-Estebas, S. McClean, D. J. Brayden, and K. H. Mills. Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine 19:1940–1950 (2001).Google Scholar
  138. 138.
    J. A. Whittum-Hudson, L. L. An, W. M. Saltzman, R. A. Prendergast, and A. B. MacDonald. Oral immunization with an anti-idiotypic antibody to the exoglycolipid antigen protects against experimental Chlamydia trachomatis infection. Nat. Med. 2:1116–1121 (1996).Google Scholar
  139. 139.
    K. Allaoui-Attarki, S. Pecquet, E. Fattal, S. Trolle, E. Chachaty, P. Couvreur, and A. Andremont. Protective immunity against Salmonella typhimurium elicited in mice by oral vaccination with phosphorylcholine encapsulated in poly(DL-lactide-coglycolide) microspheres. Infect. Immunol. 65:853–857 (1997).Google Scholar
  140. 140.
    P. A. Marx, R. W. Compans, A. Gettie, J. K. Staas, R. M. Gilley, M. J. Mulligan, G. V. Yamschikov, D. Chen, and J. H. Eldridge. Protection against vaginal SIV transmission with microencapsulated vaccine. Science 260:1323–1327 (1993).Google Scholar
  141. 141.
    J. Tseng, J. L. Komisar, R. N. Trout, R. E. Hunt, J. Y. Chen, A. J. Johnson, L. Pitt, and D. L. Ruble. Humoral immunity to aerosolized staphylococcal enterotoxin B (SEB), a superantigen, in monkeys vaccinated with SEB toxoid-containing microspheres. Infect. Immunol. 63:2880–2885 (1995).Google Scholar
  142. 142.
    M. Ugozzoli, D. T. O'Hagan, and G. S. Ott. Intranasal immunization of mice with herpes simplex virus type 2 recombinant gD2: the effect of adjuvants on mucosal and serum antibody responses. Immunology 93:563–571 (1998).Google Scholar
  143. 143.
    D. H. Jones, S. Corris, S. McDonald, J. C. Clegg, and G. H. Farrar. Poly(DL-lactide-co-glycolide)-encapsulated plasmid DNA elicits systemic and mucosal antibody responses to encoded protein after oral administration. Vaccine 15:814–817 (1997).Google Scholar
  144. 144.
    E. Mathiowitz, J. S. Jacob, Y. S. Jong, G. P. Carino, D. E. Chickering, P. Chaturvedi, C. A. Santos, K. Vijayaraghavan, S. Montgomery, M. Bassett, and C. Morrell. Biologically erodable microspheres as potential oral drug delivery systems. Nature 386:410–414 (1997).Google Scholar
  145. 145.
    D. T. O'Hagan. The intestinal uptake of particles and the implications for drug and antigen delivery. J. Anat. 189(Pt 3):477–482 (1996).Google Scholar
  146. 146.
    J. E. Eyles, I. D. Spiers, E. D. Williamson, and H. O. Alpar. Tissue distribution of radioactivity following intranasal administration of radioactive microspheres. J. Pharm. Pharmacol. 53:601–607 (2001).Google Scholar
  147. 147.
    D. O'Hagan. Microparticles and polymers for the mucosal delivery of vaccines. Adv. Drug Deliv. Rev. 34:305–320 (1998).Google Scholar
  148. 148.
    S. M. Michalek, D. T. O'Hagan, S. Gould-Fogerite, G. F. Rimmelzwaan, and A. D. M. E. Osterhaus. Antigen delivery systems: nonliving microparticles, liposomes, cochleates, and ISCOMS. In P. L. Ogra, J. Mestecky, M. E. Lamm, W. Strober, J. Bienenstrock, and J. R. McGhee (eds.), Mucosal Immunology Academic Press, San Diego, 1999 pp. 759–778.Google Scholar
  149. 149.
    D. J. Brayden. Oral vaccination in man using antigens in particles: current status. Eur. J. Pharm. Sci. 14:183–189 (2001).Google Scholar
  150. 150.
    B. L. Dickinson and J. D. Clements. Dissociation of Escherichia coli heat-labile enterotoxin adjuvanticity from ADP-ribosyltransferase activity. Infect. Immunol. 63:1617–1623 (1995).Google Scholar
  151. 151.
    G. Douce, C. Turcotte, I. Cropley, M. Roberts, M. Pizza, M. Domenghini, R. Rappuoli, and G. Dougan. Mutants of Escherichia coli heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic, mucosal adjuvants. Proc. Natl. Acad. Sci. USA 92:1644–1648 (1995).Google Scholar
  152. 152.
    G. Douce, M. Fontana, M. Pizza, R. Rappuoli, and G. Dougan. Intranasal immunogenicity and adjuvanticity of site-directed mutant derivatives of cholera toxin. Infect. Immunol. 65:2821–2828 (1997).Google Scholar
  153. 153.
    A. Di Tommaso, G. Saletti, M. Pizza, R. Rappuoli, G. Dougan, S. Abrignani, G. Douce, and M. T. De Magistris. Induction of antigen-specific antibodies in vaginal secretions by using a nontoxic mutant of heat-labile enterotoxin as a mucosal adjuvant. Infect. Immunol. 64:974–979 (1996).Google Scholar
  154. 154.
    V. Giannelli, M. R. Fontana, M. M. Giuliani, D. Guangcai, R. Rappuoli, and M. Pizza. Protease susceptibility and toxicity of heat-labile enterotoxins with a mutation in the active site or in the protease-sensitive loop. Infect. Immunol. 65:331–334 (1997).Google Scholar
  155. 155.
    M. M. Giuliani, G. Del Giudice, V. Giannelli, G. Dougan, G. Douce, R. Rappuoli, and M. Pizza. Mucosal adjuvanticity and immunogenicity of LTR72, a novel mutant of Escherichia coli heat-labile enterotoxin with partial knockout of ADP-ribosyltransferase activity. J Exp. Med. 187:1123–1132 (1998).Google Scholar
  156. 156.
    M. Marchetti, M. Rossi, V. Giannelli, M. M. Giuliani, M. Pizza, S. Censini, A. Covacci, P. Massari, C. Pagliaccia, R. Manetti, J. L. Telford, G. Douce, G. Dougan, R. Rappuoli, and P. Ghiara. Protection against Helicobacter pylori infection in mice by intragastric vaccination with H. pylori antigens is achieved using a non-toxic mutant of E. coli heat-labile enterotoxin (LT) as adjuvant. Vaccine 16:33–37 (1998).Google Scholar
  157. 157.
    J. D. Barackman, G. Ott, S. Pine, D. T. O'Hagan, D. Campoccia, P. Doherty, M. Radice, P. Brun, G. Abatangelo, and D. F. Williams. Oral Administration of Influenza Vaccine in Combination with the Adjuvants LT-K63 and LT-R72 Induces Potent Immune Responses Comparable to or Stronger than Traditional Intramuscular Immunization. Clin. Diagn. Lab. Immunol. 8:652–657 (2001).Google Scholar
  158. 158.
    G. Douce, V. Giannelli, M. Pizza, D. Lewis, P. Everest, R. Rappuoli, and G. Dougan. Genetically detoxified mutants of heat-labile toxin from Escherichia coli are able to act as oral adjuvants. Infect. Immunol. 67:4400–4406 (1999).Google Scholar
  159. 159.
    R. Rappuoli, M. Pizza, G. Douce, and G. Dougan. Structure and mucosal adjuvanticity of cholera and Escherichia coli heat-labile enterotoxins. Immunol. Today 20:493–500 (1999).Google Scholar
  160. 160.
    E. J. Ryan, E. McNeela, G. A. Murphy, H. Stewart, D. O'Hagan, M. Pizza, R. Rappuoli, and K. H. Mills. Mutants of Escherichia coli heat-labile toxin act as effective mucosal adjuvants for nasal delivery of an acellular pertussis vaccine: differential effects of the nontoxic AB complex and enzyme activity on Th1 and Th2 cells. Infect. Immunol. 67:6270–6280 (1999).Google Scholar
  161. 161.
    H. Jakobsen, D. Schulz, M. Pizza, R. Rappuoli, and I. Jonsdottir. Intranasal immunization with pneumococcal polysaccharide conjugate vaccines with nontoxic mutants of Escherichia coli heat-labile enterotoxins as adjuvants protects mice against invasive pneumococcal infections. Infect. Immunol. 67:5892–5897 (1999).Google Scholar
  162. 162.
    D. O'Hagan, C. Goldbeck, M. Ugozzoli, G. Ott, R. L. Burke, P. L. Heritage, M. A. Brook, B. J. Underdown, and M. R. McDermott. Intranasal immunization with recombinant gD2 reduces disease severity and mortality following genital challenge with herpes simplex virus type 2 in guinea pigs. Vaccine 17:2229–2236 (1999).Google Scholar
  163. 163.
    C. P. Simmons, P. Mastroeni, R. Fowler, M. Ghaem-maghami, N. Lycke, M. Pizza, R. Rappuoli, and G. Dougan. MHC class I-restricted cytotoxic lymphocyte responses induced by enterotoxin-based mucosal adjuvants. J. Immunol. 163:6502–6510 (1999).Google Scholar
  164. 164.
    J. A. Neidleman, G. Ott, and D. O'Hagan. Mutant heat-labile enterotoxins as adjuvants for CTL induction. In J. M. Walker (ed.), Methods in Molecular Medicine Humana Press, Totowa, New Jersey, 2000 pp. 327–336.Google Scholar
  165. 165.
    M. Singh, M. Briones, and D. T. O'Hagan. A novel bioadhesive intranasal delivery system for inactivated influenza vaccine. J. Control. Release 70:267–276 (2001).Google Scholar
  166. 166.
    M. Ugozzoli, G. Santos, J. Donnelly, and D. T. O'Hagan. Potency of a genetically toxoided mucosal adjuvant derived from the heat-labile enterotoxin of E. coli (LTK63) is not adversely affected by the presence of pre-existing immunity to the adjuvant. J. Infect. Dis. 183(2):351–354 (2001).Google Scholar
  167. 167.
    U. Gluck, J. O. Gebbers, and R. Gluck. Phase 1 evaluation of intranasal virosomal influenza vaccine with and without Escherichia coli heat-labile toxin in adult volunteers. J. Virol. 73:7780–7786 (1999).Google Scholar
  168. 168.
    R. Gluck, R. Mischler, P. Durrer, E. Furer, A. B. Lang, C. Herzog, and S. J. Cryz, Jr. Safety and immunogenicity of intranasally administered inactivated trivalent virosome-formulated influenza vaccine containing Escherichia coli heat-labile toxin as a mucosal adjuvant. J. Infect. Dis. 181:1129–1132 (2000).Google Scholar
  169. 169.
    M. Yamamoto, H. Kiyono, S. Yamamoto, E. Batanero, M. N. Kweon, S. Otake, M. Azuma, Y. Takeda, and J. R. Mcghee. Direct effects on antigen-presenting cells and T lymphocytes explain the adjuvanticity of a nontoxic cholera toxin mutant. J. Immunol. 162:7015–7021 (1999).Google Scholar
  170. 170.
    M. C. Gagliardi, F. Sallusto, M. Marinaro, A. Langenkamp, A. Lanzavecchia, and M. T. De Magistris. Cholera toxin induces maturation of human dendritic cells and licences them for Th2 priming. Eur. J. Immunol. 30:2394–2403 (2000).Google Scholar
  171. 171.
    G. M. Glenn, M. Rao, G. R. Matyas, and C. R. Alving. Skin immunization made possible by cholera toxin. Nature 391:851 (1998).Google Scholar
  172. 172.
    G. M. Glenn, D. N. Taylor, X. Li, S. Frankel, A. Montemarano, and C. R. Alving. Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat. Med. 6:1403–1406 (2000).Google Scholar
  173. 173.
    D. Chen, R. L. Endres, C. A. Erickson, K. F. Weis, M. W. McGregor, Y. Kawaoka, and L. G. Payne. Epidermal immunization by a needle-free powder delivery technology: immunogenicity of influenza vaccine and protection in mice. Nat. Med. 6:1187–1190 (2000).Google Scholar
  174. 174.
    E. C. Lavelle, G. Grant, A. Pusztai, U. Pfuller, and D. T. O'Hagan. The identification of plant lectins with mucosal adjuvant activity. Immunology 102:77–86 (2001).Google Scholar
  175. 175.
    C. O. Tacket, H. S. Mason, G. Losonsky, J. D. Clements, M. M. Levine, and C. J. Arntzen. Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat. Med. 4:607–609 (1998).Google Scholar
  176. 176.
    L. J. Richter, Y. Thanavala, C. J. Arntzen, and H. S. Mason. Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nat. Biotechnol. 18:1167–1171 (2000).Google Scholar
  177. 177.
    S. E. Straus, L. Corey, R. L. Burke, B. Savarese, G. Barnum, P. R. Krause, R. G. Kost, J. L. Meier, R. Sekulovich, and S. F. Adair. Placebo-controlled trial of vaccination with recombinant glycoprotein D of herpes simplex virus type 2 for immunotherapy of genital herpes. Lancet 343:1460–1463 (1994).Google Scholar
  178. 178.
    B. M. Longenecker, M. Reddish, R. Koganty, and G. D. MacLean. Immune responses of mice and human breast cancer patients following immunization with synthetic sialyl-Tn conjugated to KLH plus detox adjuvant. Ann. NY. Acad. Sci. 690:276–291 (1993).Google Scholar
  179. 179.
    B. Agrawal, M. J. Krantz, M. A. Reddish, and B. M. Longenecker. Cancer-associated MUC1 mucin inhibits human T-cell proliferation, which is reversible by IL-2. Nat. Med. 4:43–49 (1998).Google Scholar
  180. 180.
    P. Ghiara, M. Rossi, M. Marchetti, A. Di Tommaso, C. Vindigni, F. Ciampolini, A. Covacci, J. L. Telford, M. T. De Magistris, M. Pizza, R. Rappuoli, and G. Del Giudice. Therapeutic intragastric vaccination against Helicobacter pylori in mice eradicates an otherwise chronic infection and confers protection against reinfection. Infect. Immunol. 65:4996–5002 (1997).Google Scholar
  181. 181.
    H. L. Weiner. Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol. Today 18:335–343 (1997).Google Scholar
  182. 182.
    S. Toda, N. Ishii, E. Okada, K. I. Kusakabe, H. Arai, K. Hamajima, I. Gorai, K. Nishioka, and K. Okuda. HIV-1-specific cell-mediated immune responses induced by DNA vaccination were enhanced by mannan-coated liposomes and inhibited by anti-interferon-gamma antibody. Immunology 92:111–117 (1997).Google Scholar
  183. 183.
    P. J. Giannasca, J. A. Boden, and T. P. Monath. Targeted delivery of antigen to hamster nasal lymphoid tissue with M-cell-directed lectins. Infect. Immunol. 65:4288–4298 (1997).Google Scholar
  184. 184.
    H. Chen, V. Torchilin, and R. Langer. Lectin-bearing polymerized liposomes as potential oral vaccine carriers. Pharm. Res. 13:1378–1383 (1996).Google Scholar
  185. 185.
    N. Foster, M. A. Clark, M. A. Jepson, and B. H. Hirst. Ulex europaeus 1 lectin targets microspheres to mouse Peyer's patch M-cells in vivo. Vaccine 16:536–541 (1998).Google Scholar
  186. 186.
    N. Hussain, P. U. Jani, and A. T. Florence. Enhanced oral uptake of tomato lectin-conjugated nanoparticles in the rat. Pharm. Res. 14:613–618 (1997).Google Scholar
  187. 187.
    L. C. Agren, L. Ekman, B. Lowenadler, and N. Y. Lycke. Genetically engineered nontoxic vaccine adjuvant that combines B cell targeting with immunomodulation by cholera toxin A1 subunit. J. Immunol. 158:3936–3946 (1997).Google Scholar
  188. 188.
    L. C. Agren, L. Ekman, B. Lowenadler, J. G. Nedrud, and N. Y. Lycke. Adjuvanticity of the cholera toxin A1-based gene fusion protein, CTA1-DD, is critically dependent on the ADP-ribosyltransferase and Ig-binding activity. J. Immunol. 162:2432–2440 (1999).Google Scholar
  189. 189.
    L. Agren, E. Sverremark, L. Ekman, K. Schon, B. Lowenadler, C. Fernandez, and N. Lycke. The ADP-ribosylating CTA1-DD adjuvant enhances T cell-dependent and independent responses by direct action on B cells involving anti-apoptotic Bcl-2-and germinal center-promoting effects. J. Immunol. 164:6276–6286 (2000).Google Scholar
  190. 190.
    T. J. Goletz, K. R. Klimpel, N. Arora, S. H. Leppla, J. M. Keith, and J. A. Berzofsky. Targeting HIV proteins to the major histocompatibility complex class I processing pathway with a novel gp120-anthrax toxin fusion protein. Proc. Natl. Acad. Sci. USA 94:12059–12064 (1997).Google Scholar
  191. 191.
    H. Cao, D. Agrawal, N. Kushner, N. Touzjian, M. Essex, and Y. Lu. Delivery of exogenous protein antigens to major histocompatibility complex class I pathway in cytosol. J. Infect. Dis. 185:244–251 (2002).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  1. 1.Immunology and Infectious DiseasesChiron CorporationEmeryville

Personalised recommendations