Pharmaceutical Research

, Volume 13, Issue 3, pp 411–420 | Cite as

Transdermal Drug Delivery Using Low-Frequency Sonophoresis

  • Samir Mitragotri
  • Daniel Blankschtein
  • Robert Langer


Purpose. Application of therapeutic ultrasound (frequency: 1–3 MHz and intensity: 0–2 W/cm2) enhances transdermal drug transport, although typically by a factor of less than 10. In this paper, we show that application of ultrasound at 20 KHz induces transdermal transport enhancements of up to 1000 times higher than those induced by therapeutic ultrasound.

Methods. In vitro (human cadaver epidermis) as well as in vivo (hairless rat skin) permeation experiments were performed to assess the effect of low-frequency ultrasound on transdermal transport.

Results. Application of low-frequency ultrasound (20 KHz, 125 mW/cm2, 100 msec pulses applied every second) enhanced transdermal transport of several permeants, including estradiol, salicylic acid, corticosterone, sucrose, aldosterone, water, and butanol, across human cadaver skin by a factor in the range of 3 to 3000 and that of salicylic acid across hairless rat skin in vivo by a factor of up to 300. Low-frequency ultrasound did not induce a long-term loss of the barrier properties of the skin (in vitro) or damage to living skin of hairless rats. At a mechanistic level, it is hypothesized that application of low-frequency ultrasound enhances transdermal transport through aqueous channels in the SC generated by cavitation-induced bilayer disordering. Support for this hypothesis is provided using experimental and theoretical analyses of low-frequency sonophoresis.

Conclusions. Low-frequency ultrasound enhances transdermal transport of drugs more effectively than that induced by therapeutic ultrasound.

transdermal drug delivery ultrasound sonophoresis cavitation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bronaugh, R. L., Maibach, H. I. (Eds), In “Percutaneous Absorption”, Marcel Dekker (New York), pp 1–12, (1989).Google Scholar
  2. 2.
    Jarrett, A., (Ed.), “The Physiology and Pathology of the Skin”, Academic Press (London) (1978).Google Scholar
  3. 3.
    Walters, K. A. In “Transdermal Drug Delivery: Developmental Issues and Research Initiatives”, Hadgraft J., Guy, R. H., Eds., Marcel Dekker (New York), pp. 197–233, (1989).Google Scholar
  4. 4.
    Junginger, H. E., Bodde. H. E., de Haan de, F. H., N. In: Drug Permeation Enhancement: Hsieh, D.S. (Ed), Marcel Dekker (New York), pp. 59–90, (1994).Google Scholar
  5. 5.
    Prausnitz, M. R., Bose V., Langer, R., Weaver, J. C., “Electroporation of Mammalian Skin: A Mechanism to enhance Transdermal Drug Delivery”, Proc. Natl. Acad. Sci. USA, 90:10504–10508, (1993).Google Scholar
  6. 6.
    Kost, J., Piquet U., Mitragotri, S., Yamamoto, A., Weaver, J., Langer, R., “Enhanced Transdermal Delivery: Synergistic effect of Ultrasound and Electroporation”, Pharm. Res., In Press, (1995).Google Scholar
  7. 7.
    Burnette, R. R. In: Developmental Issues and Research Initiatives: Hadgraft J., Guy, R. H., (Eds), Marcel Dekker (New York), pp. 247–288, (1989).Google Scholar
  8. 8.
    Mitragotri, S., Edwards, D., Blankschtein D., Langer, R., “A Mechanistic study of Ultrasonically Enhanced Transdermal drug Delivery”, J. Pharm. Sci., 84:697–706, (1995).Google Scholar
  9. 9.
    Mitragotri, S., Blankschtein, D., Langer, R. In: Encl. of Pharm. Tech.; Swarbrick, J., Boylan, J. (Eds.), Marcel Dekker, In Press, (1995).Google Scholar
  10. 10.
    Kost, J., Langer, R. In: Topical Drug Bioavailability, Bioequivalence, and Penetration; Shah V. P., Maibach, H. I., Eds., Plennum (New York), pp. 91–103, (1993).Google Scholar
  11. 11.
    Kost, J., Levy, D., Langer, R. In: Percutaneous Absorption: Mechanisms-Methodology-Drug Delivery; Bronaugh, R., Maibach, H., I. (Eds.), Marcel Dekker (New York), pp. 595–601, (1989).Google Scholar
  12. 12.
    Gaertner, W., “Frequency Dependence of acoustic Cavitation”, J. Acoust. Soc. Am.,26:977–80, 1954.Google Scholar
  13. 13.
    Wester R., Maibach, H. I., In: Topical Drug Bioavailability, Bioequivalence, and Penetration; Shah V. P., Maibach, H. I., Eds., Plenum Press: New York, pp: 333–347, (1993).Google Scholar
  14. 14.
    Flynn, G. L. In: Principles of Route-to-Route Extrapolation for Risk Assessment; Gerrity, T. R., Henry, C. J., Eds., Elsevier (New York), pp. 93–127, (1990).Google Scholar
  15. 15.
    Walmsley, A. D., “Applications of Ultrasound in Dentistry”, Ultrasound in Med. & Biol., 14:7–14, (1988).Google Scholar
  16. 16.
    Wells, ‘Biomedical Applications of Ultrasound’, Plenum Press. (New York), 1977.Google Scholar
  17. 17.
    Suslick, K. S., “Ultrasound: Its Chemical, Physical, and Biological Effects”, VCH Publishers, (1989).Google Scholar
  18. 18.
    Mitragotri, S., Blankschtein, D., Langer, R., “Ultrasound-Mediated Transdermal Protein Delivery”, Science, 269: 850–853, (1995).Google Scholar
  19. 19.
    Nyborg, W. L. Mason, W. P., Eds., Academic Press (New York), pp. 265–283, (1965).Google Scholar
  20. 20.
    Gummer, C. L. In: Transdermal Drug Delivery: Developmental Issues and Research Initiatives; Guy, R. H., Hadgraft, J. (Eds.), Marcel Dekker (New York), pp. 177–197, (1989).Google Scholar
  21. 21.
    Wertz, P., W., Swrtzendruber, D. C., Downing, D. T., “Composition and Morphology of Epidermal Cyst Lipids”, J. Invest. Dermatol., 89:419–425, (1987).Google Scholar
  22. 22.
    Allenby A., F. J., Schok C., Tees T. F. S., “The Effect of Heat and Organic Solvents on The Electrical Impedance and Permeability of Excised Human Skin”, Br. J. Derm., 81:31–62, (1961).Google Scholar
  23. 23.
    Edwards, D., Langer, R., “A Linear Theory of Transdermal transport phenomena”, J. Pharm. Sci, 83:1315–1334, (1994).Google Scholar
  24. 24.
    Perry, R. H., Green, D. W., “Chemical Engineering Handbook”, McGraw-Hill Book Company, New York, (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Samir Mitragotri
    • 1
  • Daniel Blankschtein
    • 1
  • Robert Langer
    • 1
  1. 1.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridge

Personalised recommendations