Boundary-Layer Meteorology

, Volume 104, Issue 2, pp 167–199 | Cite as

Measurements Of Thermal Updraft Intensity Over Complex Terrain Using American White Pelicans And A Simple Boundary-Layer Forecast Model

  • Harlan D. Shannon
  • George S. Young
  • Michael A. Yates
  • Mark R. Fuller
  • William S. Seegar


An examination of boundary-layer meteorological and avian aerodynamic theories suggests that soaring birds can be used to measure the magnitude of vertical air motions within the boundary layer. These theories are applied to obtain mixed-layer normalized thermal updraft intensity over both flat and complex terrain from the climb rates of soaring American white pelicans and from diagnostic boundary-layer model-produced estimates of the boundary-layer depth zi and the convective velocity scale w*. Comparison of the flatland data with the profiles of normalized updraft velocity obtained from previous studies reveals that the pelican-derived measurements of thermal updraft intensity are in close agreement with those obtained using traditional research aircraft and large eddy simulation (LES) in the height range of 0.2 to 0.8 zi. Given the success of this method, the profiles of thermal vertical velocity over the flatland and the nearby mountains are compared. This comparison shows that these profiles are statistically indistinguishable over this height range, indicating that the profile for thermal updraft intensity varies little over this sample of complex terrain. These observations support the findings of a recent LES study that explored the turbulent structure of the boundary layer using a range of terrain specifications. For terrain similar in scale to that encountered in this study, results of the LES suggest that the terrain caused less than an 11% variation in the standard deviation of vertical velocity.

Convective boundary layer Cross-country soaring Mixed-layer similarity Soaring birds Thermal intensity profile 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arritt, R. W., Wilczak, J. M., and Young, G. S.: 1992, 'Observations and Numerical Modeling of an Elevated Mixed Layer', Mon. Wea. Rev. 120, 2869–2880.Google Scholar
  2. Bader, D. C. and McKee, T. B.: 1985, 'Effects of Shear, Stability and Valley Characteristics on the Destruction of Temperature Inversions', J. Appl. Meteorol. 24, 822–832.Google Scholar
  3. Banta, R. M.: 1984, 'Dry Boundary-Layer Evolution over Mountainous Terrain. Part I: Observations of the Dry Circulations', Mon. Wea. Rev. 112, 340–356.Google Scholar
  4. Bluth, R. T., Durkee, P. A., Seinfeld, J. H., Flagan, R. C., Russell, L. M., Crowley, P. A., and Finn, P.: 1996, 'Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS)', Bull. Amer. Meteorol. Soc. 77, 2691–2699.Google Scholar
  5. Crum, T. D., Stull, R. B., and Eloranta, E. W.: 1987, 'Coincident Lidar and Aircraft Observations of Entrainment into Thermals and Mixed Layers', J. Clim. Appl. Meteorol. 26, 774–788.Google Scholar
  6. Deardorff, J. W.: 1970, 'Convective Velocity and Temperature Scales for the Unstable Planetary Boundary Layer and for Rayleigh Convection', J. Atmos. Sci. 27, 1211–1215.Google Scholar
  7. Deardorff, J. W.: 1976, 'Discussion of “Thermals over the Sea and Gull Flight Behavior” by A. H. Woodcock', Boundary-Layer Meteorol. 10, 241–246.Google Scholar
  8. Gopalakrishnan, S. G., Roy, S. B., and Avissar, R.: 2000, 'An Evaluation of the Scale at which Topographical Features Affect the Convective Boundary Layer Using Large Eddy Simulation', J. Atmos. Sci. 57, 334–351.Google Scholar
  9. Greenhut, G. K. and Khalsa, S. J. S.: 1982, 'Updraft and Downdraft Events in the Atmospheric Boundary Layer over the Equatorial Pacific Ocean', J. Atmos. Sci. 39, 1803–1818.Google Scholar
  10. Greenhut, G. K. and Khalsa, S. J. S.: 1987, 'Convective Elements in the Marine Atmospheric Boundary Layer. Part I: Conditional Sampling Statistics', J. Clim. Appl. Meteorol. 26, 813–822.Google Scholar
  11. Haubenhofer, M.: 1964, 'Die Mechanik des Kurvenfluges', Schweiz. Aerorev. 39, 561–565.Google Scholar
  12. Holland, G. J., McGeer, T., and Youngren, H.: 1992, 'Autonomous Aerosondes for Economic Atmospheric Soundings Anywhere on the Globe', Bull. Amer. Meteorol. Soc. 73, 1987–1998.Google Scholar
  13. Huffaker, E. C.: 1897, 'On Soaring Flight', Smithsonian Institution, Annual Report of the Board of Regents, 183–206.Google Scholar
  14. Jacks, E., Bower, B., Dagostaro, J. J., Dallaville, J. P., Erickson, M. C., and Su, J. C.: 1990, 'New NGM-Based MOS for Maximum/Minimum Temperature, Probability of Precipitation, Cloud Amount, and Surface Wind', Wea. Forecast. 5, 128–138.Google Scholar
  15. Khalsa, S. J. S. and Greenhut, G. K.: 1985, 'Conditional Sampling of Updrafts and Downdrafts in the Marine Atmospheric Boundary Layer', J. Atmos. Sci. 42, 2550–2562.Google Scholar
  16. Langford, J. S. and Emanuel, K. A.: 1993, 'An Unmanned Aircraft for Dropwindsonde Deployment and Hurricane Reconnaissance', Bull. Amer. Meteorol. Soc. 74, 367–375.Google Scholar
  17. Mahfouf, J.-F., Richard, E., and Mascort, P.: 1987, 'Influence of Soil and Vegetation on the Development of Mesoscale Circulations', J. Clim. Appl. Meteorol. 26, 1483–1495.Google Scholar
  18. Officials of the National Oceanic and Atmospheric Administration: 1974, Climates of the States, Weather Information Center, Inc., New York, NY, 980 pp.Google Scholar
  19. Pennycuick, C. J.: 1971, 'Gliding Flight of the White-Backed Vulture Gyps africanus', J. Exp. Biol. 55, 13–38.Google Scholar
  20. Pennycuick, C. J.: 1972, 'Soaring Behaviour and Performance of some East African Birds, Observed from a Motor-Glider', Ibis 114, 178–218.Google Scholar
  21. Pennycuick, C. J.: 1975, 'Mechanics of Flight', in D. S. Farner and J. R. King (eds.), Avian Biology, New York, pp. 1–75.Google Scholar
  22. Pennycuick, C. J.: 1998, 'Field Observations of Thermals and Thermal Streets, and the Theory of Cross-Country Soaring Flight', J. Avian Biol. 29, 33–43.Google Scholar
  23. Pennycuick, C. J., Klaassen, M., Kvist, A., and Lindström, Å.: 1996, 'Wingbeat Frequency and the Body Drag Anomaly: Wind Tunnel Observations on a Thrush Nightingale (Luscinia luscinia) and a Teal (Anas crecca)', J. Exp. Biol. 199, 2757–2765.Google Scholar
  24. Reichmann, H.: 1993, Cross-Country Soaring, Thomson Publications, Santa Monica, CA, 172 pp.Google Scholar
  25. Schumann, U. and Moeng, C.-H.: 1991, 'Plume Fluxes in Clear and Cloudy Convective Boundary Layers', J. Atmos. Sci. 48, 1746–1757.Google Scholar
  26. Stull, R. B.: 1976, 'The Energetics of Entrainment across a Density Interface', J. Atmos. Sci. 33, 1260–1267.Google Scholar
  27. Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 666 pp.Google Scholar
  28. Welch, A., Welch, L., and Irving, F. G.: 1977, New Soaring Pilot, John Murray Publishers Ltd., London, U.K., 407 pp.Google Scholar
  29. Woodcock, A. H.: 1940, 'Convection and Soaring over the Open Sea', J. Marine Res. 3, 248–253.Google Scholar
  30. Woodcock, A. H.: 1975, 'Thermals over the Sea and Gull Flight Behavior', Boundary-Layer Meteorol. 9, 63–68.Google Scholar
  31. Young, G. S.: 1988, 'Turbulence Structure of the Convective Boundary Layer, Part II. Phoenix 78 Aircraft Observations of Thermals and their Environment', J. Atmos. Sci. 45, 727–735.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Harlan D. Shannon
    • 1
  • George S. Young
    • 1
  • Michael A. Yates
    • 2
  • Mark R. Fuller
    • 3
  • William S. Seegar
    • 4
  1. 1.Department of MeteorologyThe Pennsylvania State UniversityPennsylvaniaU.S.A
  2. 2.Raptor Research CenterBoise State UniversityBoiseU.S.A
  3. 3.Forest and Rangeland Ecosystem Science CenterU.S. Geological SurveyBoiseU.S.A
  4. 4.Center for Conservation Research and TechnologyUniversity of MarylandBaltimoreU.S.A

Personalised recommendations