Biomedical Microdevices

, Volume 4, Issue 3, pp 177–187 | Cite as

The Cell Clinic: Closable Microvials for Single Cell Studies

  • Edwin W.H. Jager
  • Charlotte Immerstrand
  • Kajsa Holmgren Peterson
  • Karl-Eric Magnusson
  • Ingemar Lundström
  • Olle Inganäs
Article

Abstract

We present the development of a cell clinic. This is a micromachined cavity, or microvial, that can be closed with a lid. The lid is activated by two polypyrrole/Au microactuators. Inside the microvials two Au electrodes have been placed in order to perform impedance studies on single or a small number of cells. We report on impedance measurements on Xenopus leavis melanophores. We could measure a change in the impedance upon cell spreading and identify intracellular events such as the aggregation of pigment granules. The electrical data is correlated to optical microscopy.

microactuators polypyrrole micromachining melano-phores impedance measurements microelectrodes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.E. Ayliffe, R.D. Rabbitt, P.A. Tresco, and A.B. Frazier, Transducers '97, Chicago, 1307-1310 (1997).Google Scholar
  2. H.E. Ayliffe and R.D. Rabbitt, Biophys. J. 76(1), A356-A356 (1999).Google Scholar
  3. F. Bordi, C. Cametti, A. Rosi, and A. Calcabrini, Biochim. Biophys. Acta 1153(1), 77-88 (1993).Google Scholar
  4. W.H. Coulter and W.R. Hogg, patent 3439267, USA (1969).Google Scholar
  5. A.R. deOliveira, A.M.L. Castrucci, and M.A. Visconti, Braz. J. Med. and Biol. Res. 29(12), 1743-1749 (1996).Google Scholar
  6. J.E. Ferrell and E.M. Machleder, Science 280, 895-898 (1998).Google Scholar
  7. G. Fuhr, ?TAS '96, 39-54 (1996).Google Scholar
  8. K. Futschik and H. Pfutzner, Proc. First Regional Conference, IEEE Engineering in Medicine and Biology Society and 14th Conference of the Biomedical Engineering Society of India. An International Meet (1995).Google Scholar
  9. M.R. Gandhi, P. Murray, G.M. Spinks, and G.G. Wallace, Synth. Met. 73, 247-256 (1995).Google Scholar
  10. I. Giaever and C.R. Keese, Proc. Nat. Acad. Sci. (USA) 88(17), 7896-7900 (1991).Google Scholar
  11. I. Giaever and C.R. Keese, Nature 366(6455), 591-592 (1993).Google Scholar
  12. P. Gravesen, J. Branebjerg, and O.S. Jensen, J. Micromech. Microeng. 3(4), 168-182 (1993).Google Scholar
  13. R.A. Hoffman and W.B. Britt, J. Histochem. Cytochem. 27(1), 234-240 (1979).Google Scholar
  14. C. Immerstrand, E.W.H. Jager, I. Lundström, O. Inganäs, K.H. Petersson, K.-E. Magnusson, In manuscript (2001).Google Scholar
  15. E.W.H. Jager, O. Inganäs, and I. Lundström, Science 288(5475), 2335-2338 (2000a).Google Scholar
  16. E.W.H. Jager, E. Smela, and O. Inganäs, Science 290(5496), 1540-1545 (2000b).Google Scholar
  17. A. Karlsson, Linköping University Medical Dissertations No 659, Linköping (2001).Google Scholar
  18. P. Kersten, S. Bouwstra, and J.W. Petersen, Sensors and Actuators A 51(1), 51-54 (1995).Google Scholar
  19. G. Lin, K.S.J. Pister, and K.P. Roos, J. Microelectromechanical Syst. 9(1), 9-17 (2000).Google Scholar
  20. R. Lind, P. Connolly, C.D.W. Wilkinson, L.J. Breckenridge, and J.A.T. Dow, Biosens. Bioelectron. 6(4), 359-367 (1991).Google Scholar
  21. M.P. Maher, H. Dvorak-Carbone, J. Pine, J.A. Wright, and Y.-C. Tai, Med. Biol. Eng. Comput. 37, 110-118 (1999).Google Scholar
  22. H.M. McConnell, J.C. Owicki, J.W. Parce, D.L. Miller, G.T. Baxter, H.G. Wada, S. Pitchford, Science 257, 1906-1912 (1992).Google Scholar
  23. T. Müller, G. Gradl, S. Howitz, S. Shirley, T. Schnelle, G. Fuhr, Biosensors and Bioelectronics 14(3), 247-256 (1999).Google Scholar
  24. L.E.M. Nery and A.M.D. Castrucci, Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 118(4), 1135-1144 (1997).Google Scholar
  25. T. Nyberg, H. Jerregå rd, O. Inganäs, C. Hildebrand, and I. Lundström, 5th European Conference on Molecular Electronics Linköping, Sweden, 78 (1999).Google Scholar
  26. J.W. Parce, J.C. Owicki, K.M. Kercso, G.B. Sigal, H.G. Wada, V.C. Muir, L.J. Bousse, K.L. Ross, B.I. Sikic, H.M. McConnell, Science 246, 243-247 (1989).Google Scholar
  27. Q. Pei and O. Inganäs, J. Phys. Chem. 96(25), 10507-10514 (1992).Google Scholar
  28. M.D. Rollag and M.R. Adelman, Pigment Cell Res. 6(5), 365-371 (1993).Google Scholar
  29. C. Sager, P. LeDuc, and T. Saif, IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology (Lyon, France, 76-79, 2000).Google Scholar
  30. J.T. Santini, M.J. Cima, and R. Langer, Nature 397, 335-338 (1999).Google Scholar
  31. M. Schön, Practical Training Report, Laboratory of Applied Physics (IFM, Linköpings universitet, 1997).Google Scholar
  32. H.P. Schwan, Medical Progress Through Technology 19(4), 163-165 (1993).Google Scholar
  33. E. Smela, O. Inganäs, and I. Lundström, Science 268, 1735-1738 (1995a).Google Scholar
  34. E. Smela, J. Micromech. Microeng. 9(1), 1-18 (1999).Google Scholar
  35. E. Smela, O. Inganäs, and I. Lundström, Transducers '95 Stockholm, Sweden, 218-219 (1995b).Google Scholar
  36. L.L. Sohn, et al., Proc. Nat. Acad. Sci (USA) 97(20), 10687-10690 (2000).Google Scholar
  37. R.K. Vestergaard and S. Bouwstra, Transducers '99 Sendai, Japan, 480-483 (1999).Google Scholar
  38. T.X. Zhao, J. Med. Eng. Technol. 20(3), 115-120 (1996).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Edwin W.H. Jager
    • 1
  • Charlotte Immerstrand
    • 2
  • Kajsa Holmgren Peterson
    • 2
  • Karl-Eric Magnusson
    • 2
  • Ingemar Lundström
    • 3
  • Olle Inganäs
    • 1
  1. 1.Biomolecular and Organic Electronics, Department of Physics and Measurement TechnologyLinköpings universitetLinköpingSweden
  2. 2.Division of Medical Microbiology, Department of Health and EnvironmentLinköpings universitetLinköpingSweden
  3. 3.Division of Applied Physics, Department of Physics and Measurement TechnologyLinköpings universitetLinköpingSweden

Personalised recommendations