Pharmaceutical Research

, Volume 13, Issue 8, pp 1133–1141 | Cite as

Natural Products as a Resource for New Drugs

  • Alice M. Clark
Article

Abstract

Natural products have served as a major source of drugs for centuries, and about half of the pharmaceuticals in use today are derived from natural products. The aim of this review is to provide an overview of the continuing central role of natural products in the discovery and development of new pharmaceuticals. In this context, selected examples of important natural product-derived drugs are cited, focusing on some of the most recent introductions to the clinical setting, and a brief overview of some of the important recent developments and remaining challenges in the process of discovering and developing bioactive natural products is provided. Interest in natural products research is strong and can be attributed to several factors, including unmet therapeutic needs, the remarkable diversity of both chemical structures and biological activities of naturally occurring secondary metabolites, the utility of bioactive natural products as biochemical and molecular probes, the development of novel and sensitive techniques to detect biologically active natural products, improved techniques to isolate, purify, and structurally characterize these active constituents, and advances in solving the demand for supply of complex natural products. Opportunities for multidisciplinary research that joins the forces of natural products chemistry, molecular and cellular biology, synthetic and analytical chemistry, biochemistry, and pharmacology to exploit the vast diversity of chemical structures and biological activities of natural products are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    D. D. Soejarto and N. R. Farnsworth. Tropical Rain Forests: Potential Source of New Drugs? Perspectives Biol. Med. 32:244–256 (1989).Google Scholar
  2. 2.
    V. E. Tyler, L. R. Brady, and J. E. Robbers. Pharmacognosy, Ninth Edition, Lea & Febiger, Philadelphia, 1988.Google Scholar
  3. 3.
    X.-M. Cheng. To Market, To Market—1993. In J. A. Bristol (ed.), Annual Reports in Medicinal Chemistry, Academic Press, vol. 29, 1994, pp. 331–354.Google Scholar
  4. 4.
    S. H. Ferreira. A Bradykinin-Potentiating Factor (BPF) Present in the Venom of Bothrops jararaca. Brit. J. Pharmacol. 24:163–169 (1965).Google Scholar
  5. 5.
    S. H. Ferreira, L. J. Greene, V. A. Alabaster, Y. S. Bakhle, and J. R. Vane. Activity of Various Fractions of Bradykinin Potentiating Factor against Angiotensin I Converting Enzyme. Nature 225:379–380 (1970).Google Scholar
  6. 6.
    S. H. Ferreira, D. C. Bartelt, and L. J. Greene. Isolation of Bradykinin-Potentiating Peptides from Bothrops jararaca. Biochem. 9:2583–2593 (1970).Google Scholar
  7. 7.
    M. A. Ondetti, B. Rubin, and D. W. Cushman. Design of Specific Inhibitors of Angiotensin-Converting Enzyme: New Class of Orally Active Antihypertensive Agents. Science 196:441–444 (1977).Google Scholar
  8. 8.
    J. G. Hardman, L. E. Limbird, P. B. Molinoff, R. W. Ruddon, and A. G. Gilman (eds.), The Pharmacological Basis of Therapeutics, Ninth Edition, McGraw-Hill, New York, 1996.Google Scholar
  9. 9.
    R. B. Barlow and H. R. Ing. Curare-Like Action of Polymethylene Bis-Quaternary Ammonium Salts. Brit. J. Pharmacol. Chemother. 3:298 (1948).Google Scholar
  10. 10.
    I. A. McDonald, N. Cosford, and J.-M. Vernier. Nicotinic Acetylcholine Receptors: Molecular Biology, Chemistry and Pharmacology. In J. A. Bristol (ed.), Annual Reports in Medicinal Chemistry, Academic Press, vol. 30, 1995, pp. 41–50.Google Scholar
  11. 11.
    J. P. Hieble and R. R. Ruffolo. Pharmacology of Neuromuscular Transmission. In P. L. Munson, R. A. Mueller, and G. R. Breese (eds.), Principles of Pharmacology: Basic Concepts & Clinical Applications, Chapman & Hall, New York, 1995, pp. 145–159, 1734.Google Scholar
  12. 12.
    J. Berdy (ed.), CRC Handbook of Antibiotic Compounds. CRC Press, Inc., Boca Raton, Florida, 1980.Google Scholar
  13. 13.
    P. I. Trigg, In, H. Wagner, H. Hikino, and N. R. Farnsworth (eds.), Economic and Medicinal Plant Research, Academic Press, London, vol. 3, 1989, pp. 19–55.Google Scholar
  14. 14.
    Y.-L. Wu and Y. Li. Study on the Chemistry of Qinghaosu (Artemisinin). Med. Chem. Res. 5:569–586 (1995).Google Scholar
  15. 15.
    I.-S. Lee and C. D. Hufford. Metabolism of Antimalarial Sesquiterpene Lactones. Pharmac. Ther. 48:345–355 (1990).Google Scholar
  16. 16.
    H. G. Davies and R. H. Green. Avermectins and Milbemycins. Nat. Prod. Repts. 3:87–121 (1986).Google Scholar
  17. 17.
    K. Awadzi, K. Y. Dadzie, H. Schulz-Key. D. R. W. Haddock, H. M. Gillies, and M. A. Aziz. The Chemotherapy of Onchocerciasis X. An Assessment of Four Single Dose Treatment Regimes of MK-933 (Ivermectin) in Human Onchocerciasis. Ann. Trop. Med. Parasitol 79:63 (1985).Google Scholar
  18. 18.
    B. M. Greene et al. Comparison of Ivermectin and Diethylcarbamazine in the Treatment of Onchocerciasis. New Engl J. Med. 313:133 (1985).Google Scholar
  19. 19.
    S. G. Bradley and F. Marciano-Cabral. Antiparasitic Drugs. In P. L. Munson, R. A. Mueller, and G. R. Breese (eds.), Principles of Pharmacology: Basic Concepts & Clinical Applications, Chapman & Hall, New York, 1995, pp. 1437–1473.Google Scholar
  20. 20.
    T. L. Loo and E. J. Freireich. Cancer Chemotherapeutic Drugs. In P. L. Munson, R. A. Mueller, and G. R. Breese (eds.), Principles of Pharmacology: Basic Concepts & Clinical Applications, Chapman & Hall, New York, 1995, pp. 1475–1516.Google Scholar
  21. 21.
    M. E. Wall and M. C. Wani. Camptothecin and Taxol: Discovery to Clinic—Thirteenth Bruce F. Cain Memorial Award Lecture. Cancer Res. 55:753 (1995).Google Scholar
  22. 22.
    P. B. Schiff, F. Fant, and S. B. Horwitz. Promotion of Microtubule Assembly In Vitro by Taxol. Nature 277:665–667 (1979).PubMedGoogle Scholar
  23. 23.
    M. E. Wall, M. C. Wani, C. E. Cooke, K. H. Palmer, A. T. McPhail, and G. A. Sim. Plant Antitumor Agents. I. The Isolation and Structure of Camptothecin, a Novel Alkaloidal Leukemia and Tumor Inhibitor from Camptotheca acuminata, J. Am. Chem. Soc. 88:388 (1966).Google Scholar
  24. 24.
    H. Sahelin and A. von Wartburg. The Chemical and Biological Route from Podophyllotoxin Glucoside to Etoposide: Ninth Cain Memorial Award Lecture. Cancer Research 51:5–15 (1991).Google Scholar
  25. 25.
    H. Stahelin and A. von Wartburg. In E. Jucker (ed.), Progress in Drug Research, Birkhauser-Verlag, Basel, vol. 33, 1989, pp. 169–266.Google Scholar
  26. 26.
    A. D. Buss and R. D. Waigh. Natural Products as Leads for New Pharmaceuticals. In Manfred E. Wolff (ed.), Burger's Medicinal Chemistry and Drug Discovery, Fifth Edition, Vol. 1, John Wiley & Sons, Inc., New York, 1995, pp. 983–1033.Google Scholar
  27. 27.
    G. R. Pettit, C. L. Herald, D. L. Doubek, D. L. Herald, E. Arnold, and J. Clardy. Isolation and Structure of Bryostatin 1. J. Am. Chem. Soc. 104:6846–6848 (1982).Google Scholar
  28. 28.
    R. A. Heyman, D. J. Mangelsdorf, J. A. Dyck, R. B. Stein, G. Eichele, R. M. Evans and C. Thaller. 9-Cis Retinoic Acid Is a High Affinity Ligand for the Retinoid X Receptor. Cell 68:397 (1992).CrossRefPubMedGoogle Scholar
  29. 29.
    E. A. Allegretto, M. R. McClurg, S. B. Lazarchik, D. L. Clemm, S. A. Kerner, M. G. Elgort, M. F. Boehm. S. K. White, J. W. Pike and R. A. Heyman. Transactivation Properties of Retinoic Acid and Retinoid X Receptors in Mammalian Cells and Yeast. J. Biol. Chem. 268:26625 (1993).Google Scholar
  30. 30.
    A. M Nadzan. Retinoids for the Treatment of Oncological Diseases. In J. A. Bristol (ed.), Annual Reports in Medicinal Chemistry, Academic Press, vol. 30, 1995, pp. 119–128.Google Scholar
  31. 31.
    D. J. Gordon and B. M. Rifkind. 3-Hydroxy-3-Methylglutaryl Coenzyme A (HMG-CoA) Reductase Inhibitors: A New Class of Cholesterol-Lowering Agents. Ann. Int. Med. 107:759–761 (1987).Google Scholar
  32. 32.
    A. G. Brown, T. C. Smale, T. J. King. R. Hasenkamp and R. H. Thompson. Crystal and Molecular Structure of Compactin, A New Antifungal Metabolite from Penicillium brevicompactum. J. Chem. Soc., Perkin Trans. I. 1165–1170 (1976).Google Scholar
  33. 33.
    A. W. Alberts, J. Chen, G. Kuron, V. Hunt, J. Huff, C. Hoffman, J. Rothrock, M. Lopez, H. Joshua, E. Harris, A. Patchett, R. Monaghan, S. Currie, E. Stapley, G. Albers-Schonberg, O. Hensens, J. Hirshfield, K. Hoogsteen, J. Liesch, and J. Springer. Mevinolin: A Highly Potent Competitive Inhibitor of Hydroxymethylglutaryl-coenzyme A Reductase and a Cholesterol-Lowering Agent. Proc. Natl. Acad. Sci. USA. 77:3957–3961 (1980).Google Scholar
  34. 34.
    A. Ruegger, M. Kuhn, H. Lichti, H. R. Loosli, R. Huguenin, C. Quiquerez, and A. Von Wartburg. Helv. Chim. Acta. 59:1075–1092 (1976).Google Scholar
  35. 35.
    G. S. Noskinm, R. L. Murphy, J. R. Black, and J. P. Phair. Salvage Therapy with Clindamycin/Primaquine for Pneumocystis carinii Pneumonia. Clin. Inf. Dis. 14:183 (1992).Google Scholar
  36. 36.
    Unpublished results.Google Scholar
  37. 37.
    H. Doernenburg and D. Knoor. Strategies for the Improvement of Secondary Metabolite Production in Plant Cell Culture. Enzyme Microb. Technol. 17:674–84 (1995).Google Scholar
  38. 38.
    R. Baum. Combinatorial Chemistry. Chem. Eng. News. 74(7):28 (1996).Google Scholar
  39. 39.
    L. Katz and S. Donadio. Polyketide Synthesis: Prospects for Hybrid Antibiotics. Annu. Rev. Microbiol. 47:875–912 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Alice M. Clark
    • 1
  1. 1.Department of Pharmacognosy and National Center for the Development of Natural Products, Research Institute of Pharmaceutical Sciences, School of PharmacyThe University of MississippiUniversity

Personalised recommendations