Advertisement

Plant Molecular Biology

, Volume 50, Issue 2, pp 225–235 | Cite as

Microsynteny between pea and Medicago truncatula in the SYM2 region

  • Gustavo Gualtieri
  • Olga Kulikova
  • Erik Limpens
  • Dong-Jin Kim
  • Douglas R. Cook
  • Ton Bisseling
  • René Geurts
Article

Abstract

The crop legume pea (Pisum sativum) is genetically well characterized. However, due to its large genome it is not amenable to efficient positional cloning strategies. The purpose of this study was to determine if the model legume Medicago truncatula, which is a close relative of pea, could be used as a reference genome to facilitate the cloning of genes identified based on phenotypic and genetic criteria in pea. To this end, we studied the level of microsynteny between the SYM2 region of pea and the orthologous region in M. truncatula. Initially, a marker tightly linked to SYM2 was isolated by performing differential RNA display on near-isogenic pea lines. This marker served as the starting point for construction of a BAC physical map in M. truncatula. A fine-structure genetic map, based on eight markers from the M. truncatula physical map, indicates that the two genomes in this region share a conserved gene content. Importantly, this fine structure genetic map clearly delimits the SYM2-containing region in pea and the SYM2-orthologous region in M. truncatula, and should provide the basis for cloning SYM2. The utility of the physical and genetic tools in M. truncatula to dissect the SYM2 region of pea should have important implications for other gene cloning experiments in pea, in particular where the two genomes are highly syntenic within the region of interest.

Medicago truncatula pea positional cloning SYM2 synteny 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer, D., Muller, H., Reich, J., Riedel, H., Ahrenkiel, O., Wartoe, P. and Strauss, M. 1993. Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nucl. Acids Res. 21: 4272–4280.Google Scholar
  2. Bennetzen, J.L. 2000. Comparative sequence analysis of plant nuclear genomes: microcolinearity and its many exceptions. Plant Cell 12: 1021–1030.Google Scholar
  3. Borisov, A.Y., Barmicheva, E.M., Jacobi, L.M., Tsyganov, V.E., Voroshilova, V.A. and Tikhanovich, I.A. 2000. Pea (Pisum sativum L.) Mendelian genes controlling development of nitrogen-fixing nodules and arbuscular mycorrhizae. Czech J. Genet. Plant Breed. 36: 106–110.Google Scholar
  4. Boutin, S., Young, N.D., Olson, T., Yu, Z.H., Schoemaker, R.C. and Vallejos, C.E. 1995. Genome conservation among three legume genera detected with DNA markers. Genome 38: 928–937.Google Scholar
  5. Callard, D., Lescure, B. and Mazzolini, L. 1994. A method for the elimination of false positives generated by mRNA differential display technique. Biotechniques 16: 1096–1103.Google Scholar
  6. Cook, D.R. 1999. Medicago truncatula: a model in the making! Curr. Opin. Plant Biol. 2: 301–304.Google Scholar
  7. Covitz, P.A., Smith, L.S. and Long, S.R. 1998. Expressed sequence tags from a root-hair-enriched Medicago truncatula cDNA library. Plant Physiol. 117: 1325–1332.Google Scholar
  8. Dehal, P., Predki, P., Olsen, A.S., Kobayashi, A., Folta, P., Lucas, S., Land, M., Terry, A., Ecale Zhou, C.L., Rash, S., Zhang, Q., Gordon, L., Kim, J., Elkin, C., Pollard, M.J., Richardson, P., Rokhsar, D., Uberbacher, E., Hawkins, T., Branscomb, E. and Stubbs, L. 2001. Human chromosome 19 and related regions in mouse: conservative and lineage-specific evolution. Science 293: 104–111.Google Scholar
  9. Devos, K.M. and Gale, M.D. 2000. Genome relationships: the grass model in current research. Plant Cell 12: 637–646.Google Scholar
  10. Doyle, J.J. 1995. DNA data and legume phylogeny: a progress report. In: M.D. Crisp and J.J. Doyle (Eds) Advances in Legume Systematics, Vol. 7: Phylogeny, Royal Botanic Gardens, Kew, UK, pp. 11–30.Google Scholar
  11. Ellis, T.H.N., Turner, L., Hellens, R.P., Lee, D., Harker, C.L., Enard, C., Domoney, C. and Davis, D.T. 1992. Linkage map of pea. Genetics 130: 649–663.Google Scholar
  12. Firmin, J.L., Wilson, K.E., Carlson, R.W., Davies, A.E. and Downie, J. 1993. Resistance to nodulation of c.v. Afghanistan peas is overcome by nodX, which mediates an O-acetylation of the Rhizobium leguminosarum lipo-oligosaccharide nodulation factor. Mol. Microbiol. 10: 351–360.Google Scholar
  13. Fransz, P., Armstrong, S., Alonso-Blanco, C., Fischer, T.C., Torrez-Ruiz, R.A. and Jones, G. 1998. Cytogenetics for the model system Arabidopsis thaliana. Plant J. 13: 867–876.Google Scholar
  14. Geurts, R., Heidstra, R., Hadri, A.E., Downie, A., Franssen, H., van Kammen, A. and Bisseling, T. 1997. Sym2 of Pisum sativum is involved in a Nod factor perception mechanism that controls the infection process in the epidermis. Plant Physiol. 115: 351–359.Google Scholar
  15. Gloudemans, T., Bhuvaneswari, T.V., Moerman, M., van Brussel, A.A.N., van Kammen, A. and Bisseling, T. 1989. Involvement of Rhizobium leguminosarum nodulation genes in gene expression in pea root hairs. Plant Mol. Biol. 12: 157–167.Google Scholar
  16. Grant, G., Cregan, P. and Schoemaker, R.C. 2000. Genome organization in dicots: genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Proc. Natl. Acad. Sci. USA 97: 4168–4173.Google Scholar
  17. Han, F., Kilian, A., Chen, J.P., Kudrna, D., Steffenson, K., Yamamoto, K., Matsumoto, T., Sasaki, T. and Kleinhofs, A. 1999. Sequence analysis of a rice BAC covering the syntenous barley Rpg1 region. Genome 42: 1071–1076.Google Scholar
  18. Jacobsen, E. and Feenstra, W.J. 1984. A new mutant with efficient nodulation in the presence of nitrate. Plant Sci. Lett. 33: 337–344.Google Scholar
  19. Jiang, Q. and Gresshoff, P.M. 1997. Classical and molecular genetics of the model legume Lotus japonicus. Mol. Plant-Microbe Interact. 10: 59–68.Google Scholar
  20. Kneen, B.E., LaRue, T.A. and Weeden, N.F. 1984. Genes reported to affect symbiotic nitrogen fixation by peas. Pisum Newsl. 16: 31–34.Google Scholar
  21. Kozik, A., Heidstra, R., Horvath, B., Kulikova, O., Tikhonovich, I., Ellis, T.H.N., van Kammen, A. and Bisseling, T. 1995. Pea lines carrying sym1 or sym2 can be nodulated by Rhizobium strains containing nodX; sym1 and sym2 are allelic. Plant Sci. 108: 41–49.Google Scholar
  22. Kozik, A., Matvienko, M., Scheres, B., Paruvangada, V.G., Bisseling, T., van Kammen, A., Ellis, T.H., LaRue, T.A. and Weeden, N.F. 1996. The pea early nodulin gene PsENOD7 maps in the region of linkage group I containing sym2 and leghemoglobin. Plant Mol. Biol. 31: 149–156.Google Scholar
  23. Kulikova, O., Gualtieri, G., Geurts, R., Kim, D.J., Cook, D.R., Huguet, T., de Jong, H., Franz, P.F. and Bisseling, T. 2001. Integration of the FISH-pachytene and genetic maps of Medicago truncatula. Plant J. 27: 49–58.Google Scholar
  24. Liang, P. and Pardee, A.B. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967–971.Google Scholar
  25. Lowrey, P.L., Shimomura, K., Antoch, M.P., Yamazaki, S., Zemenides, P.D., Ralph, M.R., Menaker, M. and Takahashi, J.S. 2000. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288: 483–492.Google Scholar
  26. Manly, K.F., Cudmore, R.H. Jr. and Meer, J.M. 2001. Map Manager QTX, cross-platform software for genetic mapping. Mammal. Genome 12: 930–932.Google Scholar
  27. Menancio-Hautea, D., Fatokun, C.A., Kumar, L., Danesh, D. and Young, N.D. 1993. Comparative genome analysis of mungbean (Vigna radiata L. Wilczek) and cowpea (Vigna unguiculata L. Walpers) using RFLP mapping data. Theor. Appl. Genet. 86: 797–810.Google Scholar
  28. Nam, Y.W., Penmetsa, R.V., Endre, G., Uribe, P., Kim, D. and Cook, D.R. 1999. Construction of a bacterial artificial chromosome library of Medicago truncatula and identification of clones containing ethylene-response genes. Theor. Appl. Genet. 98: 638–646.Google Scholar
  29. Parniske, M., Hammond-Kosack, K.M., Golstein, C., Thomas, C.M., Jones, D.A., Harrison, K., Wulff, B.B.H. and Jones, J.D.G. 1997. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell 91: 821–832.Google Scholar
  30. Parniske M. and Jones J.D. 1999. Recombination between diverged clusters of the tomato Cf-9 plant disease resistance gene family. Proc. Natl. Acad. Sci. USA 96: 5850–5855.Google Scholar
  31. Paterson, A.H., Bowers, J.E., Burow, M.D., Draye, X., Elsik, C.G., Jiang, C.X., Katsar, C.S., Lan, T.H., Lin, Y.R., Ming, R. and Wright, R.J. 2000. Comparative genomics of plant chromosomes. Plant Cell 12: 1523–1540.Google Scholar
  32. Pawlowski, K., Kunze, R., de Vries, S. and Bisseling, T. 1994. Isolation of total, poly(A) and polysomal RNA from plant tissues In: S.B. Gelvin and R.A. Schilperoort (Eds) Plant Molecular Biology Manual, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 1–13.Google Scholar
  33. Rossberg, M., Theres, K., Acarkan, A., Herrero, R., Schmitt, T., Schumacher, K., Schmitz, G. and Schmidt, R. 2001. Comparative sequence analysis reveals extensive microcolinearity in the lateral suppressor regions of the tomato, Arabidopsis, and Capsella genomes. Plant Cell 13: 979–988.Google Scholar
  34. Schmidt, R. 2000. Synteny: recent advances and future prospects. Curr. Opin. Plant Biol. 3: 97–102.Google Scholar
  35. Schneider, A., Walker, S.A., Poyser, S., Sagan, M., Ellis, T.H. and Downie, J.A. 1999. Genetic mapping and functional analysis of a nodulation-defective mutant (sym19) of pea (Pisum sativum L.). Mol. Gen. Genet. 262: 1–11.Google Scholar
  36. Temnykh, S.V., Kneen, B.E., Weeden, N.F. and LaRue, T.A. 1995a. Localization of nod-3, a gene conditioning hypernodulation, and identification of a novel translocation in Pisum sativum L. cv. Rondo. J. Hered. 86: 303–305.Google Scholar
  37. Temnykh, S.V., Weeden, N.F. and LaRue, T.A. 1995b. Sym-2 and nod-3 are independent but closley linked genes influencing nodule development in pea. Pisum Genet. 27: 26–28.Google Scholar
  38. Tikhonov, A.P., SanMiguel, P.J., Nakajima, Y., Gorenstein, N.M., Bennetzen, J.L. and Avramova, Z. 1999. Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc. Natl. Acad. Sci. USA 96: 7409–7414.Google Scholar
  39. Weeden, N.F., Kneen, B.E. and LaRue, T.A. 1990. Genetic analysis of sym genes and other nodule-related genes in Pisum sativum. In: Gresshoff, Roth, Stacey and Newton (Eds) Nitrogen Fixation: Achievements and Objectives, Chapman and Hall, New York, pp. 323–330.Google Scholar
  40. Weeden, N.F., Muehlbauer, F.J. and Ladizinsky, G. 1992. Extensive conservation of linkage relationships between pea and lentil genetic maps. J. Hered. 83: 123–129.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Gustavo Gualtieri
    • 1
  • Olga Kulikova
    • 1
  • Erik Limpens
    • 1
  • Dong-Jin Kim
    • 2
  • Douglas R. Cook
    • 2
  • Ton Bisseling
    • 1
  • René Geurts
    • 1
  1. 1.Molecular BiologyWageningen UniversityWageningenNetherlands
  2. 2.Department of Plant PathologyUniversity of CaliforniaDavisUSA

Personalised recommendations