, Volume 15, Issue 3, pp 261–270 | Cite as

Structure, properties and regulation of magnesium transport proteins

  • David G. Kehres
  • Michael E. Maguire


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Basolo F, Pearson RG. 1967 Mechanisms of Inorganic Reactions: A study of metal complexes in solution, 2 ed. New York: John Wiley.Google Scholar
  2. Black CB, Cowan JA. 1997 Inert chromium and cobalt complexes as probes of magnesium-dependent enzymes. Evaluation of the mechanistic role of the essential metal cofactor in Escherichia coli exonuclease III. Eur J Biochem 243, 684-689.Google Scholar
  3. Blanc-Potard AB, Groisman EA. 1997 The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J 16, 5376-5385.Google Scholar
  4. Blanc-Potard AB, Solomon F, Kayser J, Groisman EA. 1999 The SPI-3 pathogenicity island of Salmonella enterica. J Bacteriol 181, 998-1004.Google Scholar
  5. Buchmeier N, Blanc-Potard A, Ehrt S, Piddington D, Riley L, Groisman EA. 2000 A parallel intraphagosomal survival strategy shared by Mycobacterium tuberculosis and Salmonella enterica. Mol Microbiol 35, 1375-1382.Google Scholar
  6. Bui DM, Gregan J, Jarosch E, Ragnini A, Schweyen RJ. 1999 The Bacterial Magnesium Transporter CorA Can Functionally Substitute for Its Putative Homologue Mrs2p in the Yeast Inner Mitochondrial Membrane. J Biol Chem 274, 20438-20443.Google Scholar
  7. Carafoli E, Brini M. 2000 Calcium pumps: Structural basis for and mechanism of calcium transmembrane transport. Curr Opin Chem Biol 4, 152-161.Google Scholar
  8. Clarke DM, Loo TW, Inesi G, MacLennan DH. 1989 Location of high affinity Ca2+-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase. Nature 339, 476-478.Google Scholar
  9. Cowan JA. 1991 Metallobiochemistry of Magnesium. Coordination Complexes with Biological Substrates: Site Specificity, Kinetics and Thermodynamics of Binding, and Implications for Activity. Inorgan Chem 30, 2740-2747.Google Scholar
  10. Cowan JA. 1993 Metallobiochemistry of RNA. Co(NH3)63+ as a probe for Mg2+(aq) binding sites. J Inorg Biochem 49, 171-175.Google Scholar
  11. Cowan JA. 1998 Metal activation of enzymes in nucleic acid biochemistry. Chem Rev 98, 1067-1087.Google Scholar
  12. Diebler H, Eigen M, Ilgenfritz G, Maass G, Winkler R. 1969 Kinetics and mechanism of reactions of main group metal ions with biological carriers. Pure Appl Chem 20, 93-115.Google Scholar
  13. Faguy DM, Doolittle RF. 2000 Horizontal transfer of catalase-peroxidase genes between Archaea and pathogenic bacteria. Trends Genet 16, 196-197.Google Scholar
  14. Gibson MM, Bagga DA, Miller CG, Maguire ME. 1991 Magnesium transport in Salmonella typhimurium: The influence of new mutations conferring Co2+ resistance on the CorA Mg2+ transport system. Mol Microbiol 5, 2753-2762.Google Scholar
  15. Groisman EA, Chiao E, Lipps CJ, Heffron F. 1989 Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc Natl Acad Sci USA 86, 7077-7081.Google Scholar
  16. Grubbs RD, Maguire ME. 1987 Magnesium as a regulatory cation: Criteria and evaluation. Magnesium 6, 113-127.Google Scholar
  17. Hmiel SP, Snavely MD, Florer JB, Maguire ME, Miller CG. 1989 Magnesium transport in Salmonella typhimurium: Genetic characterization and cloning of three magnesium transport loci. J Bacteriol 171, 4742-4751.Google Scholar
  18. Hmiel SP, Snavely MD, Miller CG, Maguire ME. 1986 Magnesium transport in Salmonella typhimurium: Characterization of magnesium influx and cloning of a transport gene. J Bacteriol 168, 1444-1450.Google Scholar
  19. Huang H-W, Cowan JA. 1994 Metallobiochemistry of the magnesium ion-Characterization of the essential metal-binding site in Escherichia coli ribonuclease. Eur J Biochem 219, 253-260.Google Scholar
  20. Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS. 1983 Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136, 254-261.Google Scholar
  21. Jou R, Cowan JA. 1991 Ribonuclease H activation by inert transition-metal complexes. Mechanistic probes for metallocofactors: Insights on the metallobiochemistry of divalent magnesium ion. J Am Chem Soc 113, 6685-6686.Google Scholar
  22. Kehres DG, Lawyer CH, Maguire ME. 1998 The CorA magnesium transporter gene family. Microb Compar Genomics 43, 151-169.Google Scholar
  23. Kucharski LM, Lubbe WJ, Maguire ME. 2000 Cation hexaammines are selective and potent inhibitors of the CorA magnesium transport system. J Biol Chem 275, 16767-16773.Google Scholar
  24. MacDiarmid CW, Gardner RC. 1998 Overexpression of the Saccharomyces cerevisiae Magnesium Transport System Confers Resistance to Aluminum Ion. J Biol Chem 273, 1727-1732.Google Scholar
  25. MacLennan DH, Rice WJ, Green NM. 1997 The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases. J Biol Chem 272, 28815-28818.Google Scholar
  26. Maguire ME. 1990 Magnesium: A regulated and regulatory cation. Metal Ions Biol 26, 135-153.Google Scholar
  27. Maguire ME, Snavely MD, Leizman JB, Gura S, Bagga D, Tao T, Smith DL. 1992 Mg2+ transporting P-type ATPases of Salmonella typhimurium. Wrong way, wrong place enzymes. Ann NY Acad Sci 671, 244-256.Google Scholar
  28. Martin RB. 1990 Bioinorganic Chemistry of Magnesium. Metal Ions Biol 26, 1-13.Google Scholar
  29. Meek DW, Ibers JA. 1970 The Crystal Structure of Hexaamminecobalt(III) tetrachlorozincate(II) chloride, [Co(NH3)6][ZnCl4]Cl. Inorgan Chem 9, 465-470.Google Scholar
  30. Merino S, Gavin R, Altarriba M, Izquierdo L, Maguire ME, Tomas JM. 2001 The MgtE Mg2+ transport protein is involved in Aeromonas hydrophila adherence. FEMS Microbiol Lett 198, 189-195.Google Scholar
  31. Miller SI. 1991 PhoP/PhoQ: Macrophage-specific modulators of Salmonella virulence. Mol Microbiol 5, 2073-2078.Google Scholar
  32. Miller SI, Kukral AM, Mekalanos JJ. 1989 A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci USA 86, 5054-5058.Google Scholar
  33. Moncrief MBC, Maguire ME. 1998 Magnesium and the role of mgtC in Salmonella typhimurium. Infect Immun 66, 3802-3809.Google Scholar
  34. Romani A, Scarpa A. 2000 Regulation of cellular magnesium. Front Biosci 5, D720-D734.Google Scholar
  35. Scarborough GA. 1999 Structure and function of the P-type ATPases. Curr Opin Cell Biol 11, 517-522.Google Scholar
  36. Silver S. 1969 Active transport of magnesium in Escherichia coli. Proc Natl Acad Sci USA 62, 764-771.Google Scholar
  37. Smith DL, Tao T, Maguire ME. 1993a Membrane topology of a P-type ATPase: The MgtB Mg2+ transport protein of Salmonella typhimurium. J Biol Chem 268, 22469-22479.Google Scholar
  38. Smith RL, Banks JL, Snavely MD, Maguire ME. 1993b Sequence and topology of the CorA magnesium transport systems of Salmonella typhimurium and Escherichia coli. Identification of a new class of transport protein. J Biol Chem 268, 14071-14080.Google Scholar
  39. Smith RL, Gottlieb E, Kucharski LM, Maguire ME. 1998a Functional similarity between Archaeal and Bacterial CorA magnesium transporters. J Bacteriol 180, 2788-2791.Google Scholar
  40. Smith RL, Kaczmarek ML, Kucharski LM, Maguire ME. 1998b Magnesium transport in Salmonella typhimurium: Induction of MgtA and MgtCB expression during invasion of epithelial and macrophage cells. Microbiology 144, 1835-1843.Google Scholar
  41. Smith RL, Maguire ME. 1995a Distribution of the CorA Mg2+ transport system in Gram-negative bacteria. J Bacteriol 177, 1638-1640.Google Scholar
  42. Smith RL, Maguire ME. 1995b Genetics and molecular biology of magnesium transport systems. In: Cowan JA, ed. The biological chemistry of magnesium. London: VCH Publishing Co.; 211-234.Google Scholar
  43. Smith RL, Maguire ME. 1998 Microbial magnesium transport: Unusual transporters searching for identity. Mol Microbiol 28, 217-226.Google Scholar
  44. Smith RL, Szegedy MA, Walker C, Wiet RM, Redpath A, Kaczmarek ML, Kucharski LM, Maguire ME. 1998c The CorA magnesium transport protein of Salmonella typhimurium: Mutagenesis of conserved residues in the third transmembrane segment identifies part of a Mg2+ pore. J Biol Chem 273, 28663-28669.Google Scholar
  45. Smith RL, Thompson LJ, Maguire ME. 1995 Cloning and characterization of mgtE, a putative new class of Mg2+ transporter from Bacillus firmus OF4. J Bacteriol 177, 1233-1238.Google Scholar
  46. Snavely MD, Florer JB, Miller CG, Maguire ME. 1989 Magnesium transport in Salmonella typhimurium: 28Mg2+ transport by the CorA, MgtA, and MgtB systems. J Bacteriol 171, 4761-4766.Google Scholar
  47. Snavely MD, Gravina SA, Cheung TT, Miller CG, Maguire ME. 1991a Magnesium transport in Salmonella typhimurium: Regulation of mgtA and mgtB expression. J Biol Chem 266, 824-829.Google Scholar
  48. Snavely MD, Miller CG, Maguire ME. 1991b The mgtB Mg2+ transport locus of Salmonella typhimurium encodes a P-type ATPase. J Biol Chem 266, 815-823.Google Scholar
  49. Suga H, Cowan JA, Szostak JW. 1998 Unusual metal ion catalysis in an acyl-transferase ribozyme. Biochemistry 37, 10118-10125.Google Scholar
  50. Szegedy MA, Maguire ME. 1999 The CorA Mg2+ Transport Protein of Salmonella typhimurium: Mutagenesis of Conserved Residues in the Second Membrane Domain. J Biol Chem 274, 36973-36979.Google Scholar
  51. Tao T, Grulich PF, Kucharski LM, Smith RL, Maguire ME. 1998 Magnesium transport in Salmonella typhimurium: Biphasic time and magnesium dependence of the transcription of the mgtA and mgtCB loci. Microbiology 144, 655-664.Google Scholar
  52. Tao T, Snavely MD, Farr SG, Maguire ME. 1995 Magnesium transport in Salmonella typhimurium: mgtA encodes a P-type ATPase and is regulated by Mg2+ in a manner similar to that of the mgtB P-type ATPase. J Bacteriol 177, 2654-2662.Google Scholar
  53. Townsend DE, Esenwine AJ, George J, III, Bross D, Maguire ME, Smith RL. 1995 Cloning of the mgtE Mg2+ transporter from Providencia stuartii and the distribution of mgtE in the eubacteria. J Bacteriol 177, 5350-5354.Google Scholar
  54. Toyoshima C, Nakasako M, Nomura H, Ogawa H. 2000 Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405, 647-655.Google Scholar
  55. Zhang P, Toyoshima C, Yonekura K, Green NM, Stokes DL. 1998 Structure of the calcium pump from sarcoplasmic reticulum at 8 Å resolution. Nature 392, 835-839.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • David G. Kehres
    • 1
  • Michael E. Maguire
    • 1
  1. 1.Department of PharmacologyCase Western Reserve UniversityClevelandUSA

Personalised recommendations