, Volume 115, Issue 1, pp 81–91 | Cite as

DNA loss and evolution of genome size in Drosophila

  • Dmitri A. Petrov


Mutation is often said to be random. Although it must be true that mutation is ignorant about the adaptive needs of the organism and thus is random relative to them as a rule, mutation is not truly random in other respects. Nucleotide substitutions, deletions, insertions, inversions, duplications and other types of mutation occur at different rates and are effected by different mechanisms. Moreover the rates of different mutations vary from organism to organism. Differences in mutational biases, along with natural selection, could impact gene and genome evolution in important ways. For instance, several recent studies have suggested that differences in insertion/deletion biases lead to profound differences in the rate of DNA loss in animals and that this difference per se can lead to significant changes in genome size. In particular, Drosophila melanogaster appears to have a very high rate of deletions and the correspondingly high rate of DNA loss and a very compact genome. To assess the validity of these studies we must first assess the validity of the measurements of indel biases themselves. Here I demonstrate the robustness of indel bias measurements in Drosophila, by comparing indel patterns in different types of nonfunctional sequences. The indel pattern and the high rate of DNA loss appears to be shared by all known nonfunctional sequences, both euchromatic and heterochromatic, transposable and non-transposable, repetitive and unique. Unfortunately all available nonfunctional sequences are untranscribed and thus effects of transcription on indel bias cannot be assessed. I also discuss in detail why it is unlikely that natural selection for or against DNA loss significantly affects current estimates of indel biases.

deletions insertions non-LTR elements numts spontaneous mutation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yampolsky L. Y. and Stoltzfus A.: Evol. Dev. 3 (2001): 73-83.Google Scholar
  2. 2.
    Stoltzfus A.: J. Mol. Evol. 49 (1999): 169-181.Google Scholar
  3. 3.
    Li W. H., Wu C. I. and Luo C. C.: J. Mol. Evol. 21 (1984): 58-71.Google Scholar
  4. 4.
    Gojobori T., Li W. H. and Graur D.: J. Mol. Evol. 18 (1982): 360-369.Google Scholar
  5. 5.
    Bensasson D., Zhang D.-X., Hartl D. L. and Hewitt G. M.: Trends Ecol. Evol. 16 (2001): 314-321.Google Scholar
  6. 6.
    Petrov D. A., Lozovskaya E. R. and Hartl D. L.: Nature 384 (1996): 346-349.Google Scholar
  7. 7.
    Petrov D. A. and Hartl D. L.:Mol. Biol. Evol. 15 (1998): 293-302.Google Scholar
  8. 8.
    Petrov D. A. et al.: Science 287 (2000): 1060-1062.Google Scholar
  9. 9.
    Bensasson D. et al.: Mol. Biol. Evol. 18 (2001): 246-253.Google Scholar
  10. 10.
    Petrov D. A.: Trends Genet. 17 (2001): 23-28.Google Scholar
  11. 11.
    Petrov D. A. and Hartl D. L.: Gene 205 (1997): 279-289.Google Scholar
  12. 12.
    Hardies S. C. et al.: Mol. Biol. Evol. 3 (1986): 109-125.Google Scholar
  13. 13.
    Luan D. D., Korman M. H., Jacubczak J. L. and Eickbush T. H.: Cell 72 (1993): 595-605.Google Scholar
  14. 14.
    Lathe W. C., Burke W. D., Eickbush D. G. and Eickbush T. H.: Mol. Biol. Evol. 12 (1995): 1094-1105.Google Scholar
  15. 15.
    Burke W. D., Malik H. S., Lathe W. C., 3rd and Eickbush T. H.: Nature 392 (1998): 141-142.Google Scholar
  16. 16.
    Weiner A. M., Deininger P. L. and Efstratiadis A.: Annu. Rev. Biochem. 55 (1986): 631-661.Google Scholar
  17. 17.
    Malik H. S., Burke W. D. and Eickbush T. H.: Mol. Biol. Evol. 16 (1999): 793-805.Google Scholar
  18. 18.
    Hutchison III C. A. et al.: In: Berg D. E. and Howe M. M. (eds), Mobile DNA. American Society for Microbiology, 1989, pp. 593-617.Google Scholar
  19. 19.
    Petrov D. A., Schutzman J. L., Hartl D. L. and Lozovskaya E. R.: Proc. Natl. Acad. Sci. USA 92 (1995): 8050-8054.Google Scholar
  20. 20.
    Graur D., Shuali Y. and Li W. H.: J. Mol. Evol. 28 (1989): 279-285.Google Scholar
  21. 21.
    Gu X. and Li W.-H.: J. Mol. Evol. 40 (1995): 464-473.Google Scholar
  22. 22.
    Ophir R. and Graur D.: Gene 205 (1997): 191-202.Google Scholar
  23. 23.
    Robertson H. M. and Martos R.: Gene 205 (1997): 219-228.Google Scholar
  24. 24.
    Sharp P. M. and Li W.-H.: J. Mol. Evol. 28 (1989): 398-402.Google Scholar
  25. 25.
    Bensasson D., Zhang D. X. and Hewitt G. M.:Mol. Biol. Evol. 17 (2000): 406-415.Google Scholar
  26. 26.
    Jensen S. and Heidmann T.: EMBO J. 10 (1991): 1927-1937.Google Scholar
  27. 27.
    Pelisson A., Finnegan D. J. and Bucheton A.: Proc. Natl. Acad. Sci. USA 88 (1991): 4907-4910.Google Scholar
  28. 28.
    Lozovskaya E. R., Nurminsky D. I., Petrov D. A. and Hartl D. L.: Genes Genet. Syst. 74 (1999): 201-207.Google Scholar
  29. 29.
    Lozovskaya E. R., Scheinker V. S. and Evgen'ev M. B.: Genetics 126 (1990): 619-623.Google Scholar
  30. 30.
    Petrov D. A., Chao Y.-C., Stephenson E. C. and Hartl D. L.: Mol. Biol. Evol. 15 (1998): 1562-1567.Google Scholar
  31. 31.
    Pritchard J. K. and Schaeffer S.W.: Genetics 147 (1997): 199-208.Google Scholar
  32. 32.
    Ramos-Onsins S. and Aguade M.: Genetics 150 (1998): 157-171.Google Scholar
  33. 33.
    Robin G. C., Russell R. J., Cutler D. J. and Oakeshott J. G.: Mol. Biol. Evol. 17 (2000): 563-575.Google Scholar
  34. 34.
    Selker E. U.: Trends Genet. 13 (1997): 296-301.Google Scholar
  35. 35.
    Birchler J. A., Pal-Bhadra M. and Bhadra U.: Nat. Genet. 21 (1999): 148-149.Google Scholar
  36. 36.
    Pal-Bhadra M., Bhadra U. and Birchler J. A.: Cell 90 (1997): 479-490.Google Scholar
  37. 37.
    Yoder J. A., Walsh C. P. and Bestor T. H.: Trends Genet. 13 (1997): 335-340.Google Scholar
  38. 38.
    Henikoff S. and Matzke M. A.: Trends Genet. 13 (1997): 293-295.Google Scholar
  39. 39.
    Swofford D. L.: PAUP: Phylogenetic Analysis Using Parsimony (and Other Methods). Version 4, Sinauer Associatesx, 2001.Google Scholar
  40. 40.
    Russo C. A. M., Takezaki N. and Nei M.: Mol. Biol. Evol. 12 (1995): 391-404.Google Scholar
  41. 41.
    de Laat W. L., Jaspers N. G. and Hoeijmakers J. H.: Genes Dev 13 (1999): 768-785.Google Scholar
  42. 42.
    de Cock J. G. et al.: Nucl. Acids Res. 20 (1992): 4789-4793.Google Scholar
  43. 43.
    van der Helm P. J., Klink E. C., Lohman P. H. and Eeken J. C.: Mutat. Res. 383 (1997): 113-124.Google Scholar
  44. 44.
    Sekelsky J. J., Brodsky M. H. and Burtis K. C.: J. Cell. Biol. 150 (2000): F31-F36.Google Scholar
  45. 45.
    Comeron J. M. and Kreitman M.: Genetics 156 (2000): 1175-1190.Google Scholar
  46. 46.
    Charlesworth B.: Nature 384 (1996): 315-316.Google Scholar
  47. 47.
    Petrov D. A. and Hartl D. L.: J. Hered. 91 (2000): 221-227.Google Scholar
  48. 48.
    Robertson H. M.: Genome Res. 10 (2000): 192-203.Google Scholar
  49. 49.
    Kirik A., Salomon S. and Puchta H.: Embo. J. 19 (2000): 5562-5566.Google Scholar
  50. 50.
    Adams M. D. et al.: Science 287 (2000): 2185-2195.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Dmitri A. Petrov
    • 1
  1. 1.Department of Biological SciencesStanford UniversityStanfordUSA (Phone

Personalised recommendations