Differential Equations

, Volume 38, Issue 3, pp 405–412 | Cite as

The Dirichlet Problem with Asymptotic Conditions for an Elliptic System Degenerating at a Point: I

  • S. Rutkauskas
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Triebel, H., Interpolation Theory, Function Spaces, Differential Operators, Berlin: Birkhäuser, 1977. Translated under the title Teoriya interpolyatsii, funktsional'nye prostranstva, differentsial'nye operatory, Moscow: Mir, 1980.Google Scholar
  2. 2.
    Rutkauskas, S., in Navier-Stokes Equations and Related Nonlinear Problems, Amann, H., Galdi, G.P., et al., Eds., Utrecht; Vilnius, 1998, pp. 239-254.Google Scholar
  3. 3.
    Courant, R., Partial Differential Equations (Courant, R. and Hilbert, D., Methods of Mathematical Physics, vol. 2), New York, 1962. Translated under the title Uravneniya s chastnymi proizvodnymi, Moscow: Mir, 1964.Google Scholar
  4. 4.
    Gilbarg, D. and Trudinger, N., Elliptic Partial Differential Equations of Second Order, Berlin: Springer, 1977. Translated under the title Ellipticheskie differentsial'nye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Moscow: Nauka, 1989.Google Scholar
  5. 5.
    Rutkauskas, S., Lithuanian Math. J., 1998, vol. 38, no.2, pp. 201-205.Google Scholar
  6. 6.
    Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G., Higher Transcendental Functions (Bateman Manuscript Project), New York: McGraw-Hill, 1953. Translated under the title Vysshie transtsendentnye funktsii, Moscow, 1973, vol. 1.Google Scholar
  7. 7.
    Horn, R. and Johnson, C., Matrix Analysis, Cambridge: Cambridge University, 1985. Translated under the title Matrichnyi analiz, Moscow: Mir, 1989.Google Scholar
  8. 8.
    Fedoryuk, M.V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsial'nykh uravnenii (Asymptotic Methods for Linear Ordinary Differential Equations), Moscow, 1983.Google Scholar
  9. 9.
    Koschmieder, L., Math. Ann., 1931, no. 104, pp. 387-402.Google Scholar
  10. 10.
    Tikhonov, A.N. and Samarskii, A.A., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow, 1966.Google Scholar
  11. 11.
    Solonnikov, V.A., Trudy Mat. Inst. im. V.A. Steklova Akad. Nauk SSSR, 1966, vol. 92, pp. 233-297.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • S. Rutkauskas
    • 1
  1. 1.Institute for Mathematics and Computer ScienceVilniusLithuania

Personalised recommendations