Educational Psychology Review

, Volume 14, Issue 3, pp 261–312 | Cite as

What Is the Value of Graphical Displays in Learning?

  • Ioanna Vekiri
Article

Abstract

The article reviews studies that explain the role of graphical displays in learning and synthesizes relevant findings into principles for effective graphical design. Three theoretical perspectives provide the framework that organizes the review: dual coding theory, visual argument, and conjoint retention. The three theories are compatible although they are based on different assumptions. Research suggests that graphics are effective learning tools only when they allow readers to interpret and integrate information with minimum cognitive processing. Learners' characteristics, such as prior subject-matter knowledge, visuospatial ability, and strategies, influence graphic processing and interact with graphical design to mediate its effects. Future research should investigate the interplay between display and learner characteristics and how graphical design can address individual differences in learning from graphics.

graphical displays learning cognitive processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Anderson, J. R. (1995). Cognitive Psychology and its Implications, Freeman, New YorkGoogle Scholar
  2. Atkinson, R. K., Levin, J. R., Kiewra, K. A., Meyers, T., Kim, S. I., Atkinson, L. A., Renandya, W. A., and Hwang, Y. (1999). Matrix and mnemonic text processing adjuncts: Comparing and combining their components. J. Educ. Psychol. 91(2): 342–357Google Scholar
  3. Ausubel, D. P. (1960). The use of advance organizers in the learning and retention of meaningful verbal material. J. Educ. Psychol. 51(5): 267–272Google Scholar
  4. Baddeley, A. D., and Logie, R. H. (1999). Working memory: The multiple component model. In Miyake, A., and Shah, P. (eds.), Models of Working Memory: Mechanisms of Active Maintenance and Executive Control, Cambridge University Press, New YorkGoogle Scholar
  5. Bauer, M. I., and Johnson-Laird, P. N. (1993). How diagrams can improve reasoning. Psychol. Sci. 4: 372–378Google Scholar
  6. Bertin, J. (1983). Semiology of Graphics, The University ofWisconsin Press, WisconsinGoogle Scholar
  7. Brown, J. S., Collins, A., and Duguid, P. (1989). Situated cognition and the culture of learning. Educ. Res. 18(1): 32–42Google Scholar
  8. Carroll, J.B. (1993). Human Cognitive Abilities:ASurvey of Factor-Analytic Studies, Cambridge University Press, New YorkGoogle Scholar
  9. Clark, J. M., and Paivio, A. (1991). Dual coding theory and education. Educ. Psychol. Rev. 3(3): 149–210Google Scholar
  10. Cox, R. (1999). Representation construction, externalized cognition and individual differences. Learn. Instruc. 9: 343–363Google Scholar
  11. D'Esposito, M., Detre, J. A., Aguirre, G. K., Stallcup, M., Alsop, D. C., Tippet, L. J., and Farah, M. J. (1997). A functional MRI study of mental image generation. Neuropsychologia, 35(5): 725–730Google Scholar
  12. Dickson, L. A. S., Schrankel, P. S., and Kulhavy, R. (1988). Verbal and spatial encoding of text. Instruc. Sci. 17: 145–157Google Scholar
  13. Dunston, P. J. (1992). A critique of graphic organizer research. Read. Res. Instruc. 31(2): 57–65Google Scholar
  14. Finke, R. A., and Shepard, R. N. (1986). Visual functions of mental imagery. In Boff, K. R., Kaufman, L., and Thomas, J. P. (eds.), Handbook of Perception and Human Performance, Wiley, New YorkGoogle Scholar
  15. Gerber, R., Boulton-Lewis, G., and Bruce, C. (1995). Children's understanding of graphic representations of quantitative data. Learn. Instruc. 5: 77–100Google Scholar
  16. Goodman, N. (1968). The Languages of Art, Hackett, IndianapolisGoogle Scholar
  17. Griffin, M. M., and Robinson, D. H. (2000). Role of mimeticism and spatiality in textual recall. Contemp. Educ. Psychol. 25: 125–149Google Scholar
  18. Guthrie, J. T., Weber, S., and Kimmerly, N. (1993). Searching documents: Cognitive processes and deficits in understanding graphs, tables, and illustrations. Contemp. Educ. Psychol. 18: 186–221Google Scholar
  19. Hawk, P. P. (1986). Using graphic organizers to increase achievement in middle school life science. Sci. Educ. 70(1): 81–87Google Scholar
  20. Hegarty, M., Carpenter, P. A., and Just, M. A. (1991). Diagrams in the comprehension of scientific text. In Barr, R., Kamil, M. L., Mosenthal, P. B., and Pearson, P. D. (eds.), Handbook of Reading Research, Vol. 2, Longman, New YorkGoogle Scholar
  21. Hegarty, M., and Just, M. A. (1989). Understanding machines from text and diagrams. In Mandl, H., and Levin, J. R. (eds.), Knowledge Acquisition From Text and Pictures, Elsevier Science, New YorkGoogle Scholar
  22. Hegarty, M., and Just, M. A. (1993). Constructing mental models from text and diagrams. J. Mem. Lang. 32: 717–742Google Scholar
  23. Johnson-Laird, P. N. (1998). Imagery, visualization, and thinking. In Hochberg, J. (ed.), Perception and Cognition at Century's End. Handbook of Perception and Cognition, Academic Press, New YorkGoogle Scholar
  24. Jonides, J., and Smith, E. E. (1997). The architecture of working memory. In Rugg, M. D. (ed.), Cognitive Neuroscience, Taylor & Francis, LondonGoogle Scholar
  25. Kenny, R. F. (1995). The generative effects of instructional organizers with computer-based interactive video. J. Educ. Comput. Res. 12(3): 275–296Google Scholar
  26. Kiewra, K. A., Robinson, D. H., Christian, D., and McShane, A. (1988). Providing study notes: Relation of three types of notes for review. J. Educ. Psychol. 80: 595–597Google Scholar
  27. Kosslyn, S. M. (1981). The medium and the message in mental imagery: A theory. Psychol. Rev. 88(1): 46–66Google Scholar
  28. Kosslyn, S. M. (1988). Imagery in learning. In Gazzaniga, M. S. (ed.), Perspectives in Memory Research, MIT Press, Cambridge, MA, pp. 245–273Google Scholar
  29. Kosslyn, S. M. (1989). Understanding charts and graphs. Appl. Cogn. Psychol. 3: 185–226Google Scholar
  30. Kosslyn, S. M. (1994). Image and Brain. The Resolution of the Imagery Debate, The MIT Press, Cambridge, MA.Google Scholar
  31. Kozma, R. B. (1991). Learning with Media. Rev. Educ. Res. 61(2): 179–211Google Scholar
  32. Kulhavy, R. W., Stock, W. A., and Caterino, L. C. (1994). Reference maps as a framework for remembering text. In Schnotz, W., and Kulhavy, R.W. (eds.), Comprehension of Graphics, Elsevier Science, New York, pp. 153–162Google Scholar
  33. Kulhavy, R. W., Stock, W. A., and Kealy, W. A. (1993a). How geographic maps increase recall of instructional text. Educ. Technol. Res. Dev. 41(4): 47–62Google Scholar
  34. Kulhavy, R. W., Stock, W. A., Peterson, S. E., Pridemore, D. R., and Klein, J. D. (1992). Using maps to retrieve text: A test of conjoint retention. Contemp. Educ. Psychol. 17: 56–70Google Scholar
  35. Kulhavy, R. W., Stock, W. A., Woodard, K. A., and Haygood, R. C. (1993b). Comparing elaboration and dual coding theories: The case of maps and text. Contemp. Educ. Psychol. 106(4): 483–498Google Scholar
  36. Kulhavy, R. W., Woodard, K. A., Haygood, R. C., and Webb, J. M. (1993c). Using maps to remember text: An instructional analysis. Br. J. Educ. Psychol. 63: 161–169Google Scholar
  37. Lambiotte, J. G., Dansereau, D. F., Cross, D. R., and Reynolds, S. B. (1989). Multirelational semantic maps. Educ. Psychol. Rev. 1(4): 331–367Google Scholar
  38. Larkin, J. H., and Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Sci. 11: 65–99Google Scholar
  39. Levin, J. R., Anglin, G. J., and Carney, R. N. (1987). On empirically validating functions of pictures in prose. In Willows, D. M., and Houghton, H. A. (eds.), The Psychology of Illustration, Vol. 1, Springer-Verlag, New York, pp. 51–85Google Scholar
  40. Levin, J. R., and Mayer, R. E. (1993). Understanding illustrations in text. In Britton, B. K., Woodward, A., and Binkley, M. (eds.), Learning from textbooks. Theory and practice (pp. 95–114). Hillsdale, NJ: Lawrence Erlbaum AssociatesGoogle Scholar
  41. Lewandowsky, S., and Behrens, J. T. (1999). Statistical maps and graphs. In Durso, F. T., Nickerson, R. S., Schvaneveldt, R. W., Dumais, S. T., Lindsay, D. S., Chi, M. T. H. (eds.). Handbook of Applied Cognition, Wiley, New YorkGoogle Scholar
  42. Logie, R. H. (1995). Visuospatial Working Memory, Erlbaum, Hillsdale, NJGoogle Scholar
  43. Lohse, G., Walker, N., Biolsi, K., and Rueter, H. (1991). Classifying graphical information. Behav. Inf. Technol. 50(5): 419–436Google Scholar
  44. Lowe, R. K. (1994). Selectivity in diagrams: Reading beyond the lines. Educ. Psychol. 14(4): 467–491Google Scholar
  45. Lowe, R.K. (1996). Background knowledge and the construction of a situational representation from a diagram. Eur. J. Psychol. Educ. 11(4): 377–397Google Scholar
  46. Mayer, R. E. (1989a). Models for understanding. Rev. Educ. Res. 59(1): 43–64Google Scholar
  47. Mayer, R. E. (1989b). Systematic thinking fostered by illustrations in scientific text. J. Educ. Psychol. 81(2): 240–246Google Scholar
  48. Mayer, R. E. (1994). Building mental representations from pictures and words. In Schnotz, W., and Kulhavy, R.W. (eds.), Comprehension of Graphics, North-Holland, AmsterdamGoogle Scholar
  49. Mayer, R. E., and Anderson, R. B. (1991). Animations need narrations: An experimental test of a dual coding hypothesis. J. Educ. Psychol. 83: 484–490Google Scholar
  50. Mayer, R. E., and Anderson, R. B. (1992). The instructive animation: Helping students build connections between words and pictures in multimedia learning. J. Educ. Psychol. 84: 444–452Google Scholar
  51. Mayer, R. E., Bove, W., Bryman, A., Mars, R., and Tapanengco, L. (1996). When less is more: Meaningful learning from visual and verbal summaries of science textbook lessons. J. Educ. Psychol. 88(1): 64–73Google Scholar
  52. Mayer, R. E., and Gallini, J. K. (1990). When is an illustration worth ten thousand words? J. Educ. Psychol. 82(4): 715–726Google Scholar
  53. Mayer, R. E., and Moreno, R. (1998). A split-attention effect in multimedia learning: Evidence for dual processing systems in working memory. J. Educ. Psychol. 90(2): 312–320Google Scholar
  54. Mayer, R. E., and Sims, V.K. (1994). For whom is a picture worth a thousand words? Extensions of a dual coding theory of multimedia learning. J. Educ. Psychol. 86(3): 389–401Google Scholar
  55. Mayer, R. E., Steinhoff, K., Bower, G., and Mars, R. (1995). A generative theory of textbook design: Using annotated illustrations to foster meaningful learning of science text. Educ. Technol. Res. Dev. 43(1): 31–43Google Scholar
  56. Miyake, A., and Shah, P. (1999). Toward unified theories of working memory: Emerging general consensus, unresolved theoretical issues, and future research directions. In Miyake, A., and Shah, P. (eds.), Models of Working Memory: Mechanisms of Active Maintenance and Executive Control, Cambridge University Press, New YorkGoogle Scholar
  57. Mokros, J. R., and Tinker, R. F. (1987). The impact of microcomputer-based labs on children's ability to interpret graphs. J. Res. Sci. Teaching 24(4): 369–383Google Scholar
  58. Moreno, R., and Mayer, R. E. (1999). Cognitive principles of multimedia learning: The role of modality and contiguity. J. Educ. Psychol. 91(2): 358–368Google Scholar
  59. Mousavi, S. Y., Low, R., and Sweller, J. (1995). Reducing cognitive load by mixing auditory and visual presentation modes. J. Educ. Psychol. 87: 319–334Google Scholar
  60. Narayanan, N. H., Suwa, M., and Motoda, H. (1995). Hypothesizing behaviors from device diagrams. In Glasgow, J., Narayanan, N. H., and Chandrasekaran, B. (eds.), Diagrammatic Reasoning: Cognitive and Computational Perspectives, AAAI Press, Menlo Park, CA.Google Scholar
  61. National Research Council (1996). National Science Education Standards, National Academy Press, Washington, DC.Google Scholar
  62. Novak, J. D. (1996). Concept mapping: A tool for improving science teaching and learning. In Treagust, D. F., Duit, R., and Fraser, B. J. (eds.), Improving teaching and learning in science and mathematics. New York: Teachers College PressGoogle Scholar
  63. O'Donnell, A. (1993). Searching for information in knowledge maps and texts. Contemp. Educ. Psychol. 18: 222–239Google Scholar
  64. Paivio, A. (1971). Imagery and Verbal Processes, Holt, Rinehart, and Winston, New YorkGoogle Scholar
  65. Paivio, A. (1983). The empirical case for dual coding. In Yuille, J. (ed.), Imagery, Cognition, and Memory, Erlbaum, Hillsdale, NJ.Google Scholar
  66. Paivio, A. (1990). Mental Representations. A Dual Coding Approach, Oxford University Press, New YorkGoogle Scholar
  67. Paivio, A., Clark, J. M., and Khan, M. (1988). Effects on concreteness and semantic relatedness on composite imagery ratings and cued recall. Mem. Cogn. 16(5): 422–430Google Scholar
  68. Paivio, A., and Csapo, K. (1973). Picture superiority in free recall: Imagery or dual coding? Cogn. Psychol. 5: 176–206Google Scholar
  69. Paivio, A., Walsh, M., and Bons, T. (1994). Concreteness effects on memory: When and why? J. Exp. Psychol. Learn. Mem. Cogn. 20(5): 1196–1204Google Scholar
  70. Pea, R. (1994). Seeing what we build together: Distributed multimedia learning environments for transformative communications. J. Learn. Sci. 3(3): 285–299Google Scholar
  71. Purnell, K. N., Solman, R. T., and Sweller, J. (1991). The effects of technical illustrations on cognitive load. Instruc. Sci. 20: 443–462Google Scholar
  72. Pylyshyn, Z.W. (1973). What the mind's eye tells the mind's brain:Acritique of mental imagery. Psychol. Bull. 80: 1–24Google Scholar
  73. Pylyshyn, Z.W. (1981). The imagery debate: Analogue media versus tacit knowledge. Psychol. Rev. 87: 16–45Google Scholar
  74. Reisberg, D., and Heuer, F. (in press). Visuospatial images. In Shah, P., and Miyake, A. (eds.), Handbook of Visuospatial Thinking, Cambridge University Press, New YorkGoogle Scholar
  75. Rewey, K. L., Danserau, D. F., and Peel, J. L. (1991). Knowledge maps and information processing strategies. Contemp. Educ. Psychol. 16: 203–214Google Scholar
  76. Rice, G. E. (1994). Need for explanations in graphic organizer research. Read. Psychol. 15(1): 39–67Google Scholar
  77. Rieber, L. (1990a). Animation in computer-based instruction. Educ. Technol. Res. Dev. 38(1): 77–86Google Scholar
  78. Rieber, L. P. (1990b). Using computer-animated graphics in science instruction with children. J. Educ. Psychol. 82(1): 135–140Google Scholar
  79. Rieber, L. P. (1991a). Animation, incidental learning, and continuing motivation. J. Educ. Psychol. 83(3): 318–328Google Scholar
  80. Rieber, L. P. (1991b). Effects of visual grouping strategies of computer-animated presentations on selective attention in science. Educ. Technol. Res. Dev. 39(4): 5–15Google Scholar
  81. Rittschof, K. A., and Kulhavy, R. W. (1998). Learning and remembering from thematic maps of familiar regions. Educ. Technol. Res. Dev. 46(1): 19–38Google Scholar
  82. Rittschof, K. A., Stock, W. A., Kulhavy, R.W., Verdi, M. P., and Doran, J. M. (1994). Thematic maps improve memory for facts and inferences: A test of the stimulus order hypothesis. Contemp. Educ. Psychol. 19(2): 129–142Google Scholar
  83. Robinson, D. H. (1998). Graphic organizers as aids to text learning. Read. Res. Instruc. 37: 85–105Google Scholar
  84. Robinson, D. H., Katayama, A. D., DuBois, N. F., and Devaney, T. (1998). Interactive effects of graphic organizers and delayed review of concept application. J. Exp. Educ. 67(1): 17–31Google Scholar
  85. Robinson, D. H., Katayama, A. D., and Fan, A.-C. (1996). Evidence for conjoint retention of information encoded from spatial adjunct displays. Contemp. Educ. Psychol. 21: 221–239Google Scholar
  86. Robinson, D. H., and Kiewra, K. A. (1995). Visual argument: Graphic organizers are superior to outlines in improving learning from text. J. Educ. Psychol. 87(3): 455–467Google Scholar
  87. Robinson, D. H., and Molina, E. (2002). The relative involvement of visual and auditory working memory when studying adjunct displays. Contemp. Educ. Psychol. 27(1): 118–131Google Scholar
  88. Robinson, D. H., Robinson, S. L., and Katayama, A. D. (1999). When words are represented in memory like pictures: Evidence for the spatial encoding of study materials. Contemp. Educ. Psychol. 24: 38–54Google Scholar
  89. Robinson, D. H., and Schraw, G. (1994). Computational efficiency through visual argument: Do graphic organizers communicate relations in text too effectively? Contemp. Educ. Psychol. 19: 399–415Google Scholar
  90. Robinson, D. H., and Skinner, C. H. (1996). Why graphic organizers facilitate search processes: Fewer words or computationally efficient indexing? Contemp. Educ. Psychol. 21: 166–180Google Scholar
  91. Sadoski, M., Goetz, E. T., and Fritz, J. B. (1993). Impact of concreteness on comprehensibility, interest, and memory for text: Implications for dual coding theory and text design. J. Educ. Psychol. 85(2): 291–304Google Scholar
  92. Scaife, M., and Rogers, Y. (1996). External cognition: How do graphical representations work? Int. J. Hum. Comput. Stud. 45: 185–213Google Scholar
  93. Scevak, J. J., Moore, P. J., and Kirby, J. R. (1993). Training students to use maps to increase text recall. Contemp. Educ. Psychol. 18: 401–413Google Scholar
  94. Schwartz, N. H., Ellsworth, L. S., Graham, L., and Knight, B. (1998). Accessing prior knowledge to remember text:Acomparison of advance organizers and maps. Contemp. Educ. Psychol. 23: 65–89Google Scholar
  95. Schwartz, N. H., and Philippe, A. E. (1991). Individual differences in the retention of maps. Contemp. Educ. Psychol. 16: 171–182Google Scholar
  96. Schwartz, N. H., and Wilkinson, W. K. (1992). Map-passage structural hierarchy and passage recall. Contemp. Educ. Psychol. 17: 356–336Google Scholar
  97. Shah, P., and Carpenter, P. A. (1995). Conceptual limitations in comprehending line graphs. J. Exp. Psychol. Gen. 124(1): 43–61Google Scholar
  98. Shah, P., Mayer, R. E., and Hegarty, M. (1999). Graphs as aids to knowledge construction: Signaling techniques for guiding the process of graph comprehension. J. Educ. Psychol. 91(4): 690–702Google Scholar
  99. Shah, P., and Miyake, A. (1996). The separability of working memory resources for spatial thinking and language processing: An individual differences approach. J. Exp. Psychol. Gen. 125(1): 4–27Google Scholar
  100. Simmons, D. (1988). Effects of teacher-constructed pre-and post-graphic organizer instruction on sixth-grade science students' comprehension and recall. J. Educ. Res. 82(1): 15–21Google Scholar
  101. Stock, W. A., Kulhavy, R. W., Peterson, S. E., Hancock, T. E., and Verdi, M. P. (1995). Mental representations of maps and verbal descriptions: Evidence they may affect text memory differently. Contemp. Educ. Psychol. 20: 237–256Google Scholar
  102. Sweller, J., and Chandler, P. (1994). Why is some material difficult to learn. Cogn. Instruc. 12(3): 185–233Google Scholar
  103. Sweller, J., Chandler, P., Tierney, P., and Cooper, M. (1990). Cognitive load as a factor in the structuring of technical material. J. Exp. Psychol. Gen. 119(2): 176–192Google Scholar
  104. Sweller, J., van Merrienboer, J. J. G., and Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educ. Psychol. Rev. 10(3): 251–296Google Scholar
  105. Tukey, J. W. (1990). Data-based graphics: Visual displays in the decades to come. Stat. Sci. 5: 327–329Google Scholar
  106. Tversky, B. (2001). Spatial schemas in depictions. In Gattis, M. (ed.), Spatial Schemas and Abstract Thought, MIT Press, Cambridge, MA.Google Scholar
  107. Tversky, B. (1995). Cognitive origins of graphic productions. In Marchese, F. T. (ed.), Understanding Images, Springer-Verlag, New YorkGoogle Scholar
  108. Verdi, M. P., Johnson, J. T., Stock, W. A., Kulhavy, R. W., and Whitman-Ahern, P. (1997). Organized spatial displays and texts: Effects of presentation order and display type on learning outcomes. J. Exp. Educ. 65(4): 303–317Google Scholar
  109. Verdi, M. P., Kulhavy, R. W., Stock, W. A., Rittschof, K. A., and Johnson, J. T. (1996). Text learning using scientific diagrams: Implications for classroom use. Contemp. Educ. Psychol. 21: 487–499Google Scholar
  110. Waller, R. (1981). Understanding network diagrams. Paper presented at the Annual Meeting of the American Educational Research Association, Los Angeles, April 1981Google Scholar
  111. Wiegmann, D. A., Dansereau, D. F., McCagg, E. C., Rewey, K. L., and Pitre, U. (1992). Effects of knowledge map characteristics on information processing. Contemp. Educ. Psychol. 17: 136–155Google Scholar
  112. Willerman, M., and Harg, R. A. M. (1991). The concept map as an advance organizer. J. Res. Sci. Teaching 28(8): 705–711Google Scholar
  113. Winn, W. (1987). Charts, graphs, and diagrams in educational materials. In Willows, D. M., and Houghton, H. A. (eds.), The Psychology of Illustration, Vol. 1, Springer-Verlag, New York, pp. 152–198Google Scholar
  114. Winn, W. (1991). Learning from maps and diagrams. Educ. Psychol. Rev. 3(3): 211–247Google Scholar
  115. Winn, W. (1994). Contributions of perceptual and cognitive processes to the comprehension of graphics. In Schnotz, W., and Kulhavy, R.W. (eds.), Comprehension of Graphics, Elsevier Science, New YorkGoogle Scholar
  116. Winn, W., Li, T.-Z., and Schill, D. (1991). Diagrams as aids to problem solving: Their role in facilitating search and computation. Educ. Technol. Res. Dev. 39(1): 17–29Google Scholar
  117. Zacks, J., and Tversky, B. (1999). Bars and lines: A study of graphic communication. Mem. Cogn. 27(6): 1073–1079Google Scholar
  118. Zhang, J. (1997). The nature of external representations in problem solving. Cogn. Sci. 21(2): 179–217Google Scholar
  119. Zhang, J., and Norman, D. A. (1994). Representations in distributed cognitive tasks. Cogn. Sci. 18: 87–122.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Ioanna Vekiri
    • 1
  1. 1.School of EducationThe University of MichiganAnn Arbor

Personalised recommendations