Isotopic Composition and Abundance of Interstellar Neutral Helium Based on Direct Measurements
Abstract
One of the important problems in astrophysics is the determination of the abundances of the helium isotopes 3He and 4He in various regions of the universe, since those abundances can provide evidence of the intensities of various possible processes of the production and decay of light elements and can thereby reflect their history. In this paper we describe the procedure and results of the first determination by a direct method of the abundances of helium isotopes in the local interstellar medium surrounding the solar system. The experiment was carried out on the piloted MIR station by the prolonged exposure in open space of specimens of metallic foil with their subsequent return to earth and detailed laboratory mass-spectrometric analysis. As a result, we were able to obtain estimates of the 4He density (about 7.5·10-3 cm-3) and the 3He/4He isotopic ratio (about 1.7·10-4) for the local interst ellar medium.
Preview
Unable to display preview. Download preview PDF.
REFERENCES
- 1.J. Geiss, in: Origin and Evolution of the Elements, N. Prantoz, E. Kandioni-Flam, and M. Gasse, eds., Cambridge University Press, Cambridge (1993), p. 89.Google Scholar
- 2.I. Iben et al., Astrophys. J., 220, 980 (1978).Google Scholar
- 3.D. Balser, T. Bania, R. Rood, and T. Wilson, Astrophys. J., 483, 320 (1997).Google Scholar
- 4.J. Geiss and H. Reeves, Astron. Astrophys., 18, 126 (1972).Google Scholar
- 5.G. Gloeckler and J. Geiss, Space Sci. Rev., 84, 275 (1998).Google Scholar
- 6.C. Charbonnel, Space Sci. Rev., 84, 199 (1998).Google Scholar
- 7.M. Tosi et al., Astrophys. J., 498, 226 (1988).Google Scholar
- 8.C. Chiappini et al., in: The Light Elements and Their Evolution, Int. Astron. Union Symp., No. 198, L. da Silva et al., eds., Astron. Soc. Pac. Conf. Ser. (2000), p. 540.Google Scholar
- 9.V. G. Kurt, E. N. Mironova, et al., Kosm. Issled., 23, No. 2, 225 (1984).Google Scholar
- 10.E. Chassefiere, J. L. Bertaux, et al., Astron. Astrophys., 160, 229 (1986).Google Scholar
- 11.M. Witte, M. Banaszkiewicz, and H. Rosenbauer, Space Sci. Rev., 78, 289 (1996).Google Scholar
- 12.F. Bueler, M. Bassi, et al., Astrophys. Space Sci., 274, 19 (2000).Google Scholar
- 13.G. N. Zastenker, Yu. N. Agafonov, et al., Kosm. Issled. (2002) (in press).Google Scholar
- 14.E. Salerno, F. Bueler, et al., in: Solar and Galactic Composition, R. F. Wimmer-Schweingruber, ed., Amer. Inst. Phys. Conference Proceedings, Woodbury NY (2001) (in press).Google Scholar
- 15.V. B. Baranov and K. V. Krasnobaev, Hydrodynamic Theory of a Cosmic Plasma [in Russian], Nauka, Moscow (1977).Google Scholar
- 16.J. Geiss, P. Eberhardt, et al., J. Geophys. Res., 75, 5972 (1970).Google Scholar
- 17.C. Filleux, M. Moergeli, et al., Radiat. Eff., 46, 1 (1980).Google Scholar
- 18.R. Bodmer and P. Bochsler, Astron. Astrophys., 337, 921 (1998).Google Scholar
- 19.P. Mahaffy, N. Donahue, et al., Space Sci. Rev., 84, 251 (1998).Google Scholar
- 20.J. Bahcall and M. Pinsonneault, Rev. Mod. Phys., 67, 781 (1995).Google Scholar
- 21.M. Pettini, S. L. Ellison, et al., Astrophys. J., 510, 576 (1999).Google Scholar
- 22.K. Olive et al., Astrophys. J., 483, 788 (1997).Google Scholar