Pharmaceutical Research

, Volume 13, Issue 7, pp 1020–1027 | Cite as

Percutaneous Absorption of Biologically-Active Interferon-gamma in a Human Skin Graft-Nude Mouse Model

  • Sarah M. Short
  • Brian D. Paasch
  • Jason H. Turner
  • Norman Weiner
  • Ann L. Daugherty
  • Randall J. Mrsny
Article

Abstract

Purpose. Topical delivery has been suggested to reduce systemic side effects while targeting cytokines for the treatment of certain skin conditions. Liposomes have been proposed as an enhancing agent for such a delivery. We have tested the potential of liposomes to augment the uptake of biologically active recombinant human interferon-gamma (rhIFN-γ) into human skin lacking adnexa in an in vivo model.

Methods. Stable grafts of human skin on nude mice were used to test aqueous formulations of rhIFN-γ containing or lacking liposomes composed of phosphatidylcholine and cholesterol. Transport of rhIFN-γ was assessed by monitoring the stimulated expression of intercellular adhesion molecule-1 (ICAM-1) by keratinocytes by light-level immunomicroscopy and ELISA.

Results. A single application of liposomal rhIFN-γ increased ICAM-1 levels in the epidermal basal and suprabasal cell layers of grafts. Continued application maintained this response. An aqueous formulation of rhIFN-γ or liposomes alone applied to grafts failed to induce an ICAM-1 response. Preliminary studies suggested that at least some of the lipids applied in the liposomal formulation also entered the epidermis.

Conclusions. Using a nude mouse-human skin graft model lacking adnexa, we have demonstrated that a liposomal formulation can augment the uptake of a biologically-active human cytokine, rhIFN-γ, into the epidermis of viable human skin. The therapeutic application of topical IFN-γ delivery remains to be evaluated.

human skin graft nude mouse rhIFN-γ topical delivery liposomes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    S. Monash. Location of a Superficial Barrier to Skin Penetration. J. Invest. Dermatol. 29:367–376 (1957).Google Scholar
  2. 2.
    C. Cullander and R. H. Guy. Routes of Delivery: Case Studies. Transdermal Delivery of Peptides and Proteins. Adv. Drug Delivery Reviews 8:291–329 (1992).Google Scholar
  3. 3.
    P. M. Elias and D. S. Friend. The Permeability Barrier in Mammalian Epidermis. J. Cell Biol. 65:180–191 (1975).Google Scholar
  4. 4.
    R. O. Potts and M. L. Francoeur. The Influence of Stratum Corneum Morphology on Water Permeability. J. Invest. Dermatol. 96:495–499 (1991).Google Scholar
  5. 5.
    A. C. Williams and B. W. Barry. Skin Absorption Enhancers. Crit. Rev. Therap. Drug Carrier Syst. 9:305–355 (1992).Google Scholar
  6. 6.
    M. C. Manning, K. Patel, and R. T. Borchardt. Stability of Protein Pharmaceutics. Pharm. Res. 6:903–918 (1989).Google Scholar
  7. 7.
    T.-C. Wang, J. and M. A. Hanson. Parenteral Formulations or Proteins and Peptides: Stability and Stabilizers. J. Parenteral Sci. Technol. 42:S3–S26 (1988).Google Scholar
  8. 8.
    M. Mezei and V. Gulasekharam. Liposomes—A Selective Drug Delivery System for the Topical Route of Administration. J. Pharm. Pharmacol. 34:473–272 (1982).Google Scholar
  9. 9.
    J. du Pleiss, K. Egbaria, C. Ramachandran, and N. Weiner. Topical delivery of liposomally encapsulated gamma-interferon. Antiviral Research 18:259–265 (1992).Google Scholar
  10. 10.
    M. Weiner, N. Williams, G. Birch, C. Ramachandran, C. Shipmanjr, and G. Flynn. Topical Delivery of Liposomal Encapsulated Interferon Evaluated in a Cutaneous Herpes Guinea Pig Model. Antimicrob. Agents Chemother. 18:212–224 (1989).Google Scholar
  11. 11.
    S. M. Short, W. Rubas, B. D. Paasch, and R. J. Mrsny. Transport of Biologically Active Interferon-gamma Across Human Skin In Vitro. Pharm. Res. 12:1140–1145 (1995).Google Scholar
  12. 12.
    J. N. W. N. Barker, M. H. Allen, and D. M. MacDonald. The Effect of In Vivo Interferon-γ on the Distribution of LFA-1 and ICAM-1 in Normal Human Skin. J. Invest. Dermatol. 93:439–442 (1989).Google Scholar
  13. 13.
    S. T. Boyce, T. J. Foreman, K. B. English, J. F. Stayner, M. L. Cooper, S. Sakabu, and J. F. Hansbrough. Skin Wound Closure in Athymic Mice with Cultured Human Cells, Biopolymers, and Growth Factors. Surgery 110:866–876 (1991).Google Scholar
  14. 14.
    M. L. Cooper, R. L. Spielvogel, J. F. Hansbrough, S. T. Boyce, and D. H. Frank. Reconstitution of the Histologic Characteristics of a Giant Congenital Nevomelanocytic Nevus Employing the Athymic Mouse and a Cultures Skin Substitute. J. Invest. Dermatol. 97:649–658 (1991).Google Scholar
  15. 15.
    D. E. Tacha and L. A. McKinney. Casein Reduces Nonspecific Background Staining in Immunolabeling Techniques. J. Histotechnology 15:127–132 (1992).Google Scholar
  16. 16.
    R. Harning, E. Mainolfi, J.-C. Bystryn, M. Henn, V. J. Merluzzi, and R. Rothlein. Serum Levels of Circulating Intercellular Adhesion Molecule 1 in Human Malignant Melanoma. Cancer Research 51:5003–5005 (1991).Google Scholar
  17. 17.
    D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Math. 11:431–441 (1963).Google Scholar
  18. 18.
    R. P. Ekins and P. R. Edwards. The precision profile: its use in assay design, assessment, and quality control, in Immunoassays for Clinical Chemistry, W. M. Hunter, and J. E. T. Corrie, Editors. 1983, Churchill Livingston: Edinburgh.Google Scholar
  19. 19.
    S. T. Boyce, E. E. Medrano, Z. Abdel-Malek, A. P. Supp, J. M. Dodick, J. J. Nordlund, and G. D. Warden. Pigmentation and Inhibition of Wound Contraction by Cultured Skin Substitutes with Adult Melanocytes After Transplantation to Athymic Mice. J. Invest. Dermatol. 100:360–365 (1993).Google Scholar
  20. 20.
    G. Krueger, D. Manning, J. Malouf, and B. Ogden. Long-Term Maintenance of Psoriatic Human Skin on Congenitally Athymic (Nude) Mice. J. Invest. Dermatol. 64:307–312 (1975).Google Scholar
  21. 21.
    A. Gilhar, A. Etzioni, B. Assy, and S. Eidelman. Response of Grafts from Patients with Alopecia Areata Transplanted onto Nude Mice, to Administration of Interferon-γ. Clin. Immunol. Immunopath. 66:120–126 (1993).Google Scholar
  22. 22.
    D. B. Guzek, A. H. Kennedy, S. C. McNeill, E. Wakshull, and R. O. Potts. Transdermal drug transport and metabolism. I. Comparison of in vitro and in vivo results. Pharm. Res. 6:33–39 (1989).Google Scholar
  23. 23.
    K. L. Moore. The Developing Human. 3rd ed. 1982, Philadelphia: W.B. Saunders Co. 432–436.Google Scholar
  24. 24.
    L. Lieb, C. Ramachandran, K. Egbaria, and N. Weiner. Topical Delivery Enhancement with Multilamellar Liposomes into Pilosebaceous Units: I. In Vitro Evaluation Using Fluorescent Techniques with the Hamster Ear Model. J. Invest. Dermatol. 99:108–113 (1992).Google Scholar
  25. 25.
    M. Démarchez, D. J. Hartmann, M. Régnier, and D. Asselineau. Role of Fibroblasts in Dermal Vascularization and Remodeling of Reconstructed Human Skin after Transplantation onto the Nude Mouse. Transplantation 54:317–326 (1992).Google Scholar
  26. 26.
    S. Pellegrini and C. Schindler. Early Events in Signalling by Interferons. Trends in Biological Sciences 18:338–342 (1993).Google Scholar
  27. 27.
    Y. Teraki, N. Moriya, and T. Shiohara. Drug-Induced Expression of Intercellular Adhesion Molecule-1 on Lesional Keratinocytes in Fixed Drug Eruption. Am. J. Pathol. 145:550–560 (1994).Google Scholar
  28. 28.
    M. Kashihara-Sawami and D. A. Norris. The State of Differentiation of Cultured Human Keratinocytes Determines the Level of Intercellular Adhesion Molecule-1 (ICAM-1) Expression Induced by γ Interferon. J. Invest. Dermatol. 98:741–747 (1992).Google Scholar
  29. 29.
    L. A. Cornelius, J. T. Taylor, K. Degitz, L.-J. Li, T. J. Lawley, and S. W. Caughman. A 5′ Portion of the ICAM-1 Gene Confers Tissue-Specific Differential Expression Levels and Cytokine Responsiveness. J. Invest. Dermatol. 100:753–758. (1993).Google Scholar
  30. 30.
    A. Scheynius, J. Fransson, C. Johansson, H. Hammar, B. Baker, L. Fry, and H. Valdimarsson. Expression of Interferon-Gamma Receptors in Normal and Psoriatic Skin. J. Invest. Dermatol. 98:255–258 (1992).Google Scholar
  31. 31.
    L. C. Wood, S. M. Jackson, P. M. Elias, C. Grunfeld, and K. R. Feingold. Cutaneous Terrier Perturbation Stimulates Cytokine Production in the Epidermis of Mice. J. Clin. Invest. 90:482–487 (1992).Google Scholar
  32. 32.
    K. Harada, T. Murakami, N. Yata, and S. Yamamoto. Role of Intercellular Lipids in Stratum Corneum in Percutaneous Permeation of Drugs. J. Invest. Dermatol. 99:278–282 (1992).Google Scholar
  33. 33.
    D. L. Sackett and J. Wolff. Nile Red As a Polarity-Sensitive Fluorescent Probe of Hydrophobic Protein Surfaces. Anal. Biochem. 167:228–234 (1987).Google Scholar
  34. 34.
    O. Simonetti, A. J. Hoogstraate, W. Bialik, J. A. Kempenaar, H. G. J. Schrijvers, H. E. Boddé, and M. Ponec. Visualization of Diffusion Pathways Across the Stratum Corneum of Native and In-Vitro-Reconstructed Epidermis by Confocal Laser Scanning Microscopy. Arch. Dermatol. Res. 287:465–473 (1995).Google Scholar
  35. 35.
    J. Lasch, R. Laub, and W. Wohlrab. How Deep do Intact Liposomes Penetrate into Human Skin? J. Controlled Rel. 18:55–58 (1991).Google Scholar
  36. 36.
    W. Gehring, M. Ghyczy, J. Gareiss, and M. Gloor. The Influence on Skin Penetration by Dithranol Formulated in Phospholipid Solutions and Phospholipid Liposomes. Eur. J. Pharm. Biopharm. 41:140–142 (1995).Google Scholar
  37. 37.
    A. L. Balsari, D. Morelli, S. Ménard, U. Veronesi, and M. I. Colnaghi. Protection Against Doxorubicin-Induced Alopecia in Rats by Liposome-Entrapped Monoclonal Antibodies. FASEB J. 8:226–230 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Sarah M. Short
    • 1
    • 2
  • Brian D. Paasch
    • 3
  • Jason H. Turner
    • 3
  • Norman Weiner
    • 4
  • Ann L. Daugherty
    • 1
  • Randall J. Mrsny
  1. 1.Pharmaceutical Research and DevelopmentGenentech Inc.South San Francisco
  2. 2.Department PharmacologyUniversity of North CarolinaChapel Hill
  3. 3.BioAnalytical Methods DevelopmentGenentech Inc.South San Francisco
  4. 4.College of PharmacyUniversity of MichiganAnn Arbor

Personalised recommendations