Advertisement

Russian Journal of Genetics

, Volume 38, Issue 6, pp 664–675 | Cite as

Evaluation of Phylogenetic Relationships between Five Polyploid Aegilops L. Species of the U-Genome Cluster by Means of Chromosome Analysis

  • E. D. Badaeva
Article

Abstract

Four tetraploid (Aegilops ovata, Ae. biuncialis, Ae. columnaris, and Ae. triaristata) and one hexaploid (Ae. recta) species of the U-genome cluster were studied using C-banding technique. All species displayed broad C-banding polymorphism and high frequency of chromosomal rearrangements. Chromosomal rearrangements were represented by paracentric inversions and intragenomic and intergenomic translocations. We found that the processes of intraspecific divergence of Ae. ovata, Ae. biuncialis,and Ae. columnaris were probably associated with introgression of genetic material from other species. The results obtained confirmed that tetraploid species Ae. ovata and Ae. biuncialis occurred as a result of hybridization of a diploidAe. umbellulata with Ae. comosa and Ae. heldreichii, respectively. The dissimilarity of the C-banding patterns of several chromosomes of these tetraploid species and their ancestral diploid forms indicated that chromosomal aberrations might have taken place during their speciation. Significant differences of karyotype structure, total amount and distribution of C-heterochromatin found between Ae. columnarisand Ae. triaristata, on the one hand, and Ae. ovata and Ae. biuncialis, on the other, evidenced in favor of different origin of these groups of species. In turn, similarity of the C-banding patterns of Ae. columnaris and Ae. triaristata chromosomes suggested that they were derived from a common ancestor. A diploid species Ae. umbellulata was the U-genome donor of Ae. columnaris and Ae. triaristata;however, the donor of the second genome of these species was not determined. We assumed that these tetraploid species occurred as a result of introgressive hybridization. Similarity of the C-banding patterns of chromosomes of Ae. recta and its parental species Ae. triaristata and Ae. uniaristata indicated that the formation of the hexaploid form was not associated with large modifications of the parental genomes.

Keywords

Common Ancestor Chromosomal Aberration Chromosomal Rearrangement Intraspecific Divergence Parental Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Zhukovskii, P.M., A Critical Systematic Review of Species of the Genus Aegilops L., Tr. Prikl. Bot., Genet., Selekts., 1928, vol. 18, no. 1, pp. 417-609.Google Scholar
  2. 2.
    Eig, A., Monographisch-kritische Ubersicht der Gattung Aegilops, Rep. Spec. Nov. Reg. Veg. Beith, 1929, vol. 55, pp. 1-228.Google Scholar
  3. 3.
    van Slageren, M.W., Wild Wheats: A Monograph of Aegilops L. and Amblyopyrum (Jaub. and Spach.) Eig. (Poaceae), Wageningen: Wageningen Agric. Univ., Int. Center for Agric. Res. in the Dry Areas, 1994.Google Scholar
  4. 4.
    Zohary, D. and Feldman, M., Hybridization between Amphiploids and the Evolution of Polyploids in the Wheat (Aegilops-Triticum) Group, Evolution, 1962, vol. 16, pp. 44-61.Google Scholar
  5. 5.
    Kihara, H., Considerations on the Evolution and Distribution of Aegilops Species Based on the Analyzer Method, Cytologia, 1954, vol. 19, pp. 336-357.Google Scholar
  6. 6.
    Kimber, G. and Feldman, M., Wild Wheat: An Introduction, Columbia: College Agric. Univ. Missouri, 1987.Google Scholar
  7. 7.
    Chennaveeraiah, M.S., Karyomorphological and Cytotaxonomic Studies in Aegilops, Acta Horti Gotob, 1960, vol. 23, pp. 85-186.Google Scholar
  8. 8.
    Talbert, L.E., Kimber, G., Magyar, G.M., and Buchanan, C.B., Repetitive DNA Variation and Pivotal-Differential Evolution of Wild Wheats, Genome, 1993, vol. 36, pp. 14-20.Google Scholar
  9. 9.
    Dubkovsky, J. and Dvorak, J., Genome Origin of Triticum cylindricum, Triticum triunciale, and Triticum ventricosum (Poaceae) Inferred from Variation in Repeated Nucleotide Sequences: A Methodological Study, Am. J. Bot., 1994, vol. 81, pp. 1327-1335.Google Scholar
  10. 10.
    Dubkovsky, J. and Dvorak, J., Genome Identification of the Triticum crassum Complex (Poaceae) with the Restriction Patterns of Repeated Nucleotide Sequences, Am. J. Bot., 1995, vol. 82, pp. 131-140.Google Scholar
  11. 11.
    Resta, P., Zhang, H.B., Dubkovsky, J., and Dvorak, J., The Origin of the Genomes of Triticum biunciale, T. ovatum, T. neglectum, T. columnare, and T. rectum Based on Variation in Repeated Nucleotide Sequences, Am. J. Bot., 1996, vol. 83, pp. 1556-1565.Google Scholar
  12. 12.
    Morris, E.R. and Sears, E.R., Cytogenetics of Wheat and Related Forms, in Pshenitsa i ee uluchshenie (Wheat and Its Improvement), Moscow: Kolos, 1970, pp. 33-110.Google Scholar
  13. 13.
    Lilienfeld, F.A. and Kihara, H., Genome Analysis in Triticum and Aegilops: X. Concluding Review, Cytologia, 1951, vol. 16, pp. 101-123.Google Scholar
  14. 14.
    Kihara, H., Interspecific Relationship in Triticum and Aegilops, Seiken Ziho, 1963, vol. 15, pp. 1-12.Google Scholar
  15. 15.
    Kimber, G. and Tsunewaki, K., Genome Symbols and Plasma Types in the Wheat Group, Ann. Wheat Newslett., 1989. vol. 35, pp. 24-26.Google Scholar
  16. 16.
    Kimber, G. and Yen, Y., Analysis of Pivotal-Differential Evolutionary Patterns, Proc. Natl. Acad. Sci. USA, 1988, vol. 85, pp. 9106-9108.Google Scholar
  17. 17.
    Feldman, M., Further Evidence for Natural Hybridization between Tetraploid Species of Aegilops Section pleionathera, Evolution, 1965, vol. 19, pp. 162-174.Google Scholar
  18. 18.
    Feldman, M., Fertility of Interspecific F1 Hybrids and Hybrid Derivatives Involving Tetraploid Species of Aegilops Section pleionathera, Evolution, 1965, vol. 19, pp. 556-562.Google Scholar
  19. 19.
    Feldman, M., Chromosome Pairing between Differential Genomes in Hybrids of Tetraploid Aegilops Species, Evolution, 1965, vol. 19, pp. 563-568.Google Scholar
  20. 20.
    Kimber, G. and Abu-Bakar, M., The Genome Relationships of Triticum dichasians and T. umbellulatum, Z. Pflanzenzucht, 1981, vol. 87, pp. 265-273.Google Scholar
  21. 21.
    Kimber, G., Pignone, D., and Sallee, P.J., The Relationships of the M and M u Genomes in Triticum, Can. J. Genet. Cytol., 1983, vol. 25, pp. 205-212.Google Scholar
  22. 22.
    Kimber, G. and Yen, Y., Hybrids between Wheat Relatives and Autotetraploid Triticum umbellulatum, Genome, 1989, vol. 32, pp. 1-5.Google Scholar
  23. 23.
    Badaeva, E.D., Badaev, N.S., Gill, B.S., and Filatenko, A.A., Intraspecific Karyotype Divergence in Triticum araraticum, Plant Syst. Evol., 1994, vol. 192, no. 1, pp. 117-145.Google Scholar
  24. 24.
    Friebe, B., Tuleen, N.A., and Gill, B.S., Development and Identification of a Set of Triticum aestivum-Aegilops geniculata Chromosome Addition Lines, Genome, 1999, vol. 42, no. 3, pp. 374-380.Google Scholar
  25. 25.
    Friebe, B., Tuleen, N., and Gill, B.S., Standard Karyo-type of Triticum umbellulatum and the Characterization of Derived Chromosome Addition and Translocation Lines in Common Wheat, Theor. Appl. Genet., 1995, vol. 90, pp. 150-156.Google Scholar
  26. 26.
    Vishnyakova, Kh.S., Badaeva, E.D., and Zelenin, A.V., Study of the Intraspecific Polymorphism for the Chromosome C-Banding Pattern in Aegilops umbellulata L., Genetika (Moscow), 1997, vol. 33, no. 5, pp. 623-627.Google Scholar
  27. 27.
    Badaeva, E.D., Friebe, B., and Gill, B.S., Genome Differentiation in Aegilops: 1. Distribution of Highly Repetitive DNA Sequences on Chromosomes of Diploid Species, Genome, 1996, vol. 39, no. 2, pp. 293-306.Google Scholar
  28. 28.
    Kihara, H., Genomanalyse bei Triticum und Aegilops: VII. Kurze Ubersicht uber die Ergenbisse der Jahre, 1934-1936, Mem. Coll. Agric. Kyoto Imp. Univ., 1937, vol. 41, pp. 1-61.Google Scholar
  29. 29.
    Kihara, H., Genomanalyse bei Triticum und Aegilops: IX. Systematischer Aufbau der gatting Aegilops auf Genom-Analytischer Grundlage, Cytologia, 1949, vol. 19, pp. 226-257.Google Scholar
  30. 30.
    Tsunewaki, K., Genome-Plasmone Interactions in Wheat, Jpn. J. Genet., 1993, vol. 68, pp. 1-34.Google Scholar
  31. 31.
    Tsunewaki, K., Plasmone Analysis as the Counterpart of Genome Analysis, Methods in Genome Analysis in Plants: Their Merits and Piffles, Jauhar, P.P., Ed., CRC, 1996, pp. 271-299.Google Scholar
  32. 32.
    Kimber, G., Sallee, P.J., and Feiner, M.M., The Interspecific and Evolutionary Relationships of Triticum ovatum, Genome, 1988, vol. 30, pp. 218-221.Google Scholar
  33. 33.
    Yen, J., Baenziger, P.S., and Morris, R., Genomic Constitution of Bread Wheat: Current Status, Methods in Genome Analysis in Plants: Their Merits and Pitfalls, Jauhar, P.P., Ed., CRC, 1996, pp. 359-373.Google Scholar
  34. 34.
    Dvorak, J., Genome Analysis in the Triticum-Aegilops Alliance, Proc. 9th Int. Wheat Genet. Symp., Saskatoon, 1998, vol. 1, pp. 8-11.Google Scholar
  35. 35.
    Yen, Y. and Kimber, G., Genomic Relationships in N-Genome Triticum Species, Genome, 1992, vol. 35, pp. 962-966.Google Scholar
  36. 36.
    Senyaninova-Korchagina, M.V., A Karyosystematic Study of the Genus Aegilops L., Tr. Prikl. Bot., Genet. Selekts. Rast., Ser. II, 1932, vol. 1, pp. 1-90.Google Scholar
  37. 37.
    Pathak, G.N., Studies in the Cytology of Cereals, J. Genet., 1940, vol. 39, pp. 437-467.Google Scholar
  38. 38.
    Cermeno, M.C., Orellana, J., Santos, J.L., and Lacadena, J.R., Nucleolar Activity and Competition (Amphiplasty) in the Genus Aegilops, Heredity, 1984, vol. 52, pp. 603-611.Google Scholar
  39. 39.
    Yamamoto, M., Detection of Ribosomal RNA Genes in Aegilops by In Situ Hybridization, Bull. Osaka Private College Association, 1992, vol. 29, pp. 77-82.Google Scholar
  40. 40.
    Yamamoto, M. and Mukai, Y., Physical Mapping of Ribosomal RNA Genes in Aegilops and Triticum, Proc. 8th Int. Wheat Genet. Symp. (Beijing, China, 20-25 July 1993), Li, S. and Xin, Z.Y., Eds., China, 1995, pp. 807-811.Google Scholar
  41. 41.
    Mukai, Y., Multicolor Fluorescence In Situ Hybridization: A New Strategy for Genome Analysis, Methods in Genome Analysis in Plants: Their Merits and Pitfalls, Jauhar, P.P., Ed., Boca Raton: CRC, 1996, pp. 181-194.Google Scholar
  42. 42.
    Friebe, B., Badaeva, E.D., Hammer, K., and Gill, B.S., Standard Karyotypes of Aegilops uniaristata, Ae. mutica, Ae. comosa Subspecies comosa and heldreichii (Poaceae), Plant Syst. Evol., 1996, vol. 202, pp. 199-219.Google Scholar
  43. 43.
    Badaeva, E.D., Chikida, N.N., Filatenko, A.A., and Zelenin, A.V., Comparative Analysis of M-Genome Chromosomes in Aegipols comosa and Ae. heldreichii by Means of C-Banding and In Situ Hybridization, Genetika (Moscow), 1999, vol. 35, no. 6, pp. 791-799.Google Scholar
  44. 44.
    Friebe, B. and Heun, M., C-Banding Pattern and Powdery Mildew Resistance of Triticum ovatum and Four T. aestivum-T. ovatum Chromosome Addition Lines, Theor. Appl. Genet., 1989, vol. 78, no. 3, pp. 417-424.Google Scholar
  45. 45.
    Furuta, Y., Chromosome Structural Variation in Aegilops ovata L., Jpn. J. Genet., 1981, vol. 56, pp. 287-294.Google Scholar
  46. 46.
    Yen, Y. and Kimber, G., The U-Genome in Triticum ovata from Turkey, Cereal Res. Commun., 1990, vol. 18, nos. 1-2, pp. 13-19.Google Scholar
  47. 47.
    Badaeva, E.D., Friebe, B., and Gill, B.S., Genome Differentiation in Aegilops: 2. Physical Mapping of 5S and 18S-26S Ribosomal RNA Gene Families in Diploid Species, Genome, 1996, vol. 39, no. 6, pp. 1150-1158.Google Scholar
  48. 48.
    Badaeva, E.D., Genome Evolution in Wheat and Its Wild Relatives: A Molecular Cytogenetic Study, Doctoral (Biol.) Dissertation, Moscow: Inst. Mol. Biol., 2000.Google Scholar
  49. 49.
    Badaev, N.S., Badaeva, E.D., Dubovets, N.I., et al., Formation of a Synthetic Karyotype of Tetraploid Triticale, Genome, 1992, vol. 35, no. 2, pp. 311-317.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • E. D. Badaeva
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations