Pharmaceutical Research

, Volume 13, Issue 9, pp 1411–1416 | Cite as

Atomic Force Microscopy Studies of Solid Lipid Nanoparticles

  • A. zur Mühlen
  • E. zur Mühlen
  • H. Niehus
  • W. Mehnert


Purpose. Solid Lipid Nanoparticles (SLN) are an alternative carrier system for the controlled delivery of drugs. In most cases prednisolone loaded SLN show a biphasic release behaviour. The initial phase is characterised by a fast drug release, which is followed by a sustained drug release over several weeks.

Methods. The particles are produced by high pressure homogenisation of a lipid (e.g. compritol, cholesterol) dispersed in an aqueous surfactant solution. In this study atomic force microscopy was used to image the original unaltered shape and surface properties of the particles. The crystallinity of the nanoparticles was investigated by differential scanning calorimetry.

Results. The AFM investigations revealed the disc like shape of the particles. From differential scanning calorimetry data it can be concluded that the particle core is in the crystalline state. Additionally it was proven that the particles are surrounded by a soft layer.

Conclusions. Thus it is conceivable that the fast initial drug release during in vitro dissolution tests takes place by drug release of the outer non-crystalline layers of the particles. The following sustained drug release can be assigned to the predisolone release of the inner crystalline particle layers.

atomic force microscopy solid lipid nanoparticles controlled drug delivery prednisolone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. H. Müller, J. S. Lucks. Arzneistoffträger aus festen Lipidteilchen—Feste Lipid Nanosphären (SLN). German Patent Application P 41 31 562.6 (1991), European Patent Application PCT/EP 92/02132 (1992).Google Scholar
  2. 2.
    C. Schwarz, W. Mehnert, J. S. Lucks, R. H. Müller. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J. Control. Rel. 30:83–96 (1994).Google Scholar
  3. 3.
    R. H. Müller, C. Schwarz, A. zur Mühlen, W. Mehnert. Incorporation of lipophilic drugs and drug release profiles of solid lipid nanoparticles (SLN)., Proceed. Intern. Symp. Control. Rel. Bioact. Mater. 21:146–147 (1994).Google Scholar
  4. 4.
    A. zur Mühlen, W. Mehnert. Drug Incorporation and Delivery of prednisolone loaded Solid Lipid Nanoparticles. Proc. 1st World Meeting APGI/APV, Budapest 9/11 May. 455–456 (1995).Google Scholar
  5. 5.
    E. Meyer, H. Heinzelmann, Scanning force microscopy. In R. Wiesendanger, H. J. Güntherodt. (eds.), Scanning Tunneling Microscopy II, Surface Sciences 28., Springer Verlag, Berlin, New York, 1992 pp. 99–149.Google Scholar
  6. 6.
    B. Drake, C. B. Prater, A. L. Weisenhorn, S. A. C. Gould, T. R. Albrecht, C. F. Quate, D. S. Cannell, H. G. Hansma, P. K. Hansma. Imaging crystals polymers and processes in water whith the AFM. Science 243:1586–1589 (1989).Google Scholar
  7. 7.
    W. Häberle, J. K. H. Hörber, F. Ohnesorge, D. P. E. Smith, G. Binnig. In situ investigations of single living cells infected by viruses. Ultramicroscopy 1161:42–44 (1992).Google Scholar
  8. 8.
    K. M. Shakesheff, M. C. Davies, A. Domb, T. O. Glasbey, D. E. Jackson, J. Heller, C. J. Roberts, A. G. Shard, S. J. B. Tendler, P. M. Williams. Visualizing the degredation of polymer surfaces with an Atomic Force Microscope. Proceed. Intern. Symp. Control. Rel. Bioact. Mat. 21:1343–1344 (1994).Google Scholar
  9. 9.
    R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, R. Langer. Biodegradable Long-Circulating Polymeric Nanospheres. Science 263:1600–1603 (1994).Google Scholar
  10. 10.
    A. R. Kirby, A. P. Gunning, V. J. Morris. Imaging xanthan gum by atomic force microscopy. Carbohydr. Res. 267:161–166 (1995).Google Scholar
  11. 11.
    R. H. Müller, W. Mehnert, J. S. Lucks, C. Schwarz, A. zur Mühlen, H. Weyhers, C. Freitas, D. Rühl. Solid lipid nanoparticles (SLN)—an alternative colloidal carrier system for controlled drug delivery. Eur. J. Pharm. Biopharm. 41:62–69 (1995).Google Scholar
  12. 12.
    P. H. Vallotton, M. M. Denn, B. A. Wood, M. B. Salmeron. Comparison of medical-grade ultrahigh molecular weight polyethylene microstructure by atomic force microscopy and transmission electron microscopy. J. Biomatter. Sci. Polymer 6:609–622 (1994).Google Scholar
  13. 13.
    J. W. Hagemann, J. A. Rothfus. Polymorphism and transformation Energetic of saturated Monoacid Triglycerides from DSC and theoretical modeling. J. Am. Oil. Chem. Soc. 60:1123–1131 (1983).Google Scholar
  14. 14.
    H. Mori. Solidification problems in prepapation of fats. In: N. Garti, K. Sato, Crystallisation and Polymorphism of Fats and Fatty Acids. Marcel Dekker Inc., New York, Basel, 1988, 422–442.Google Scholar
  15. 15.
    K. Thoma, P. Serno. Instabilitäten des Schmelzverhaltens von Hartfett-Suppositorien und deren Nachweis. Pharm. Ztg. 127:980–986 (1982).Google Scholar
  16. 16.
    B. W. Müller. Suppositorien, Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1986.Google Scholar
  17. 17.
    B. Siekmann, K. Westesen. Thermoanalysis of the recrystallisation process of melt-homogenized glyceride nanoparticles. Coll. Surf. B 3:159–175 (1994).Google Scholar
  18. 18.
    K. Westesen, B. Siekmann, M. Koch. Investigations on the physical state of lipid nanoparticles by synchroton radiation X-ray diffraction. Int. J. Pharm. 93:189–199 (1993).Google Scholar
  19. 19.
    T. Eldem, P. Speiser, H. Altorfer. Polymorphic behaviour of sprayed lipid micropellets and its evaluation by differential scanning calorimetry and scanning electron microscopy. Pharm. Res. 8:178–184 (1991).Google Scholar
  20. 20.
    B. Siekmann, K. Westesen. Submicron-sized parenteral carrier systems based on solid lipids. Pharm. Pharmacol. Lett. 1:123–126 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • A. zur Mühlen
    • 1
  • E. zur Mühlen
    • 2
  • H. Niehus
    • 2
  • W. Mehnert
    • 1
  1. 1.Department of Pharmaceutics, Biopharmaceutics and BiotechnologyFreie Universität BerlinBerlinGermany
  2. 2.Institut Für PhysikHumboldt-Universität zu BerlinGermany

Personalised recommendations