Biomedical Microdevices

, Volume 4, Issue 3, pp 167–175

Microfabrication Technology for Vascularized Tissue Engineering

  • Jeffrey T. Borenstein
  • H. Terai
  • Kevin R. King
  • E.J. Weinberg
  • M.R. Kaazempur-Mofrad
  • J.P. Vacanti
Article

Abstract

This work describes the application of advanced microfabrication technologies including silicon micromachining and polymer replica molding towards the field of tissue engineering of complex tissues and organs. As a general approach, tissue engineering of skin, bone and cartilage using cell transplantation on biodegradable matrices has achieved great success. However, such techniques encounter difficulties when applied to complex tissues and vital organs. The principal limitation for such applications is the lack of an intrinsic blood supply for the tissue engineered organ, which experiences significant cell death when the tissue thickness is increased above the 1–2 mm range. In this work, the concept of microfabricated scaffolds is introduced, with the goal of producing organ templates with feature resolution of 1 micron, well in excess of that necessary to fashion the capillaries which comprise the microcirculation of the organ. Initial efforts have resulted in high resolution biocompatible polymer scaffolds produced by replica molding from silicon micromachined template wafers. These scaffolds have been successfully seeded with endothelial cells in channels with dimensions as small as the capillaries.

tissue engineering MEMS microfabrication microfluidics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.A. Ayon, S. Nagle, L. Frechette, A. Epstein, and M.A. Schmidt, J. Vac. Sci. Tech. B 18, 1412 (2000).Google Scholar
  2. S.N. Bhatia, M.L. Yarmush, and M. Toner, J. Biomed. Mater. Res. 34, 189 (1997).Google Scholar
  3. J.T. Borenstein, N.D. Gerrish, M.T. Currie, and E.A. Fitzgerald, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems 205 (1999).Google Scholar
  4. J.T. Borenstein, K.R. King, C. Wang, E. Weinberg, and J.P. Vacanti, to be published.Google Scholar
  5. E.T. den Braber, J.E. de Ruijter, L.A. Ginsel, A.F. von Recum, and J.A. Jansen, J. Biomed. Mater. Res. 40, 291 (1998).Google Scholar
  6. C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, and D.E. Ingber, Science 276, 1425 (1997).Google Scholar
  7. A. Damji, L. Weston, and D.M. Brunette, Exp. Cell Res. 228, 114 (1996).Google Scholar
  8. R.D. Dowling, S.W. Etoch, K. Stevens, A. Johnson, A. Butterfield, and L.A. Gray, Circulation 102, 18, Suppl II, 763 (2000).Google Scholar
  9. J. Escaned, J. Segovia, A. Flores, P. Aragoncillo, C. Salas, F. Alfonso, M. Lopez, A. Garcia-Touchard, A. Fernandez-Ortiz, R. Hernandez, C. Banuelos, M. Sabate, L. Alfonso-Pulpon, and C. Macaya, J. Heart Lung Transplant. 20, 204 (2001).Google Scholar
  10. K.J. Gabriel, Proceedings of the IEEE 86, 1534 (1998).Google Scholar
  11. A.M. Hynes, H. Ashraf, J.K. Bhardwaj, J. Hopkins, I. Johnston, and J.N. Sheperd, Sensors and Actuators A, 74, 13 (1999).Google Scholar
  12. W. Huang, R.T. Yen, M. McLaurine, and G. Bledsoe, J. Appl. Physiol. 81, 2123 (1996).Google Scholar
  13. B.-H. Jo and D.J. Beebe, SPIE 3877, 222 (1999).Google Scholar
  14. M.R. Kaazempur-Mofrad et al., to be published.Google Scholar
  15. S. Kaihara, J.T. Borenstein, R. Koka, S. Lalan, E.R. Ochoa, M. Ravens, H. Pien, B. Cunningham, and J.P. Vacanti, Tissue Engineering 6, 105 (2000).Google Scholar
  16. G.S. Kassab, C.A. Rider, N.J. Tang, and Y.C. Fung, Am. J. Physiol. 265, H350 (1993).Google Scholar
  17. G.S. Kassab, D.H. Lin, and Y.C. Fung, Am. J. Physiol. 267, H2100 (1994).Google Scholar
  18. K.R. King, C. Wang, E. Weinberg, J.P. Vacanti, and J.T. Borenstein, Biodegradable Polymer Microfluidics for Tissue Engineering Microvasculature. In Spring 2002 MRS Symposium, MEMS and BioMEMS, in press.Google Scholar
  19. R. Langer and J.P. Vacanti, Science 260, 920 (1993).Google Scholar
  20. S.R. Quake and A. Scherer, Science 290, 1536 (2000).Google Scholar
  21. J.D. Seebach, M.K. Schneider, C.A. Comrack, A. LeGuern, S.A. Kolb, P.A. Knolle, S. Germana, H. DerSimonian, C. LeGuern, and D.H. Sachs, Xenotransplantation 848 (2001).Google Scholar
  22. S. Takayama, E. Ostuni, X. Oian, J.C. McDonald, X. Jiang, M.-H. Wu, P. Leduc, D.E. Ingber, and G.M. Whitesides, Conference: 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings, (eds), A. Dittmar and D. Beebe, (IEEE, Piscataway, NJ, USA, 322-325, 2000).Google Scholar
  23. R.C. Thomson, M.J. Yaszemski, and A.G. Mikos, Principles of Tissue Engineering, Eds. R. Lanza, R. Langer and W. Chick (Landes & Co, 1997).Google Scholar
  24. “U.S. Waiting List Tops 75,000,” Blood Weekly, May 10, 2001.Google Scholar
  25. J.P. Vacanti and R. Langer, Lancet 354 (suppl 1), 32 (1999).Google Scholar
  26. G.M. Whitesides and A.D. Stroock, Physics Today 54, 42 (2001).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Jeffrey T. Borenstein
    • 1
    • 4
  • H. Terai
    • 3
    • 4
  • Kevin R. King
    • 1
    • 2
  • E.J. Weinberg
    • 1
    • 2
  • M.R. Kaazempur-Mofrad
    • 2
    • 4
  • J.P. Vacanti
    • 3
    • 4
  1. 1.MEMS Technology GroupCharles Stark Draper LaboratoryCambridge
  2. 2.Mechanical Engineering DepartmentMassachusetts Institute of TechnologyCambridge
  3. 3.Department of Surgery, Massachusetts General HospitalHarvard Medical SchoolBoston
  4. 4.Center for the Integration of Medicine and Innovative TechnologyCambridge

Personalised recommendations