Advertisement

Russian Physics Journal

, Volume 45, Issue 1, pp 27–33 | Cite as

On Irreducible Second-Order Darboux Transformations

  • V. G. Bagrov
  • B. F. Samsonov
Article

Abstract

The second-order Darboux transform for a growing potential of a Schrödinger equation is discussed in detail. Restrictions on the transforming functions whose eigenvalues are greater than the energy of the ground state if the potential of the transformed Schrödinger equation is regular has been established. It has been shown that, along with the well-known elimination of two levels of the discrete spectrum, other opportunities can also be realized: (a) the transformed spectrum remains identical to the original one; (b) one level is eliminated from the spectrum; (c) one additional level is generated, and (d) two additional levels are generated.

Keywords

Discrete Spectrum Additional Level Transform Function Darboux Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. B. Shabat, Teor. Mat. Fiz., 103 170 (1995).Google Scholar
  2. 2.
    A. A. Andrianov, M. V. Ioffer, and V. Spiridonov, Phys. Lett. A, 174 273 (1993); A. A. Andrianov, M. V. Ioffe, and D. N. Nishnianidze, Teor. Mat. Fiz., 104 463 (1995); A. A. Andrianov, M. V. Ioffe, F. Cannata, and J. P. Dedonder, Int. J. Mod. Phys. A, 10 26 (1995); A. A. Andrianov, M. V. Ioffe, and F. Cannata, Mod. Phys. Lett. A, 11 1417 (1996).Google Scholar
  3. 3.
    V. M. Tkachuk, J. Phys. A: Math. Gen., 31 1859 (1998).Google Scholar
  4. 4.
    A. Anderson, Phys. Rev. A, 43 4602 (1991).Google Scholar
  5. 5.
    V. G. Bagrov, B. F. Samsonov, and L. A. Shekoyan, Izv. Vyssh. Uchebn. Zaved., Fiz., No.7, 59 (1995).Google Scholar
  6. 6.
    H. C. Rosu, E-reprint quant-ph/9809056. URL:http://xxx.lanl.gov (1998).Google Scholar
  7. 7.
    V. G. Bagrov and B. F. Samsonov, Phys. Lett. A, 210 60 (1996).Google Scholar
  8. 8.
    V. G. Bagrov and B. F. Samsonov, Zh. Eksp. Teor. Fiz., 109 1105 (1996); B. F. Samsonov, Yad. Fiz., 59 753 (1996);B. F. Samsonov, J. Math. Phys., 39 967 (1998); V. G. Bagrov and B. F. Samsonov, J. Phys. A: Math. Gen., 29 1011 (1996); B. F. Samsonov, Zh. Eksp. Teor. Fiz., 114 (6), 1930 (1998); B. F. Samsonov, J. Phys. A.: Math. Gen., 33 591 (2000).Google Scholar
  9. 9.
    V. G. Bagrov and B. F. Samsonov, Fiz. Elemen. Chastits At. Yad., 28 951 (1997).Google Scholar
  10. 10.
    B. M. Levitan, Inverse Sturm—Liouville Problems [in Russian], Nauka, Moscow (1984).Google Scholar
  11. 11.
    V. G. Bagrov, I. N. Ovcharov, and B. F. Samsonov, J. Moscow Phys. Soc., 5 No. 3, 191 (1995).Google Scholar
  12. 12.
    M. G. Krein, Dokl. AN SSSR, 113 970 (1957).Google Scholar
  13. 13.
    B. F. Samsonov, Mod. Phys. Lett. A, 11 1563 (1996).Google Scholar
  14. 14.
    B. F. Samsonov, Phys. Lett. A, 263 274 (1999).Google Scholar
  15. 15.
    F. A. Berezin and M. A. Shubin, The Schrödinger Equation [in Russian]. Moscow State Univ. Press, Moscow (1983).Google Scholar
  16. 16.
    C. V. Sukumar, J. Phys. A: Math. Gen., 19 2297 (1986).Google Scholar
  17. 17.
    A. G. Kostyuchenko and I. S. Sargsyan, Distribution of Eigenvalues [in Russian]. Nauka, Moscow (1979).Google Scholar
  18. 18.
    D. J. C. Fernandez, V. Hussin, and B. Mielnik, Phys. Lett. A, 244 309 (1998).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • V. G. Bagrov
    • 1
  • B. F. Samsonov
    • 1
  1. 1.Tomsk State UniversityRussia

Personalised recommendations