Plant Cell, Tissue and Organ Culture

, Volume 70, Issue 1, pp 3–12 | Cite as

Gene technologies in Pinus radiata and Picea abies: tools for conifer biotechnology in the 21st century

  • Christian Walter
  • Julia Charity
  • Lynette Grace
  • Kai Höfig
  • Ralf Möller
  • Armin Wagner

Abstract

Conifer biotechnology is reviewed, covering transformation, molecular analysis of transgenic material, functional analysis of genes and promoters in conifers and model systems, and the development of early screening technologies for new introduced traits. Technologies and concepts that promise to be of significant advantage to conifer biotechnology in the new century are discussed.

ELISA genetic engineering herbicide resistance lignin molecular analysis reproductive development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bechthold N & Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol. Biol. 82: 259–266Google Scholar
  2. Bishop-Hurley SL, Zabkievicz RJ, Grace LJ, Gardner RC & Walter C (2001) Conifer genetic engineering: transgenic Pinus radiata (D Don) and Picea abies (Karst) plants are resistant to the herbicide Buster. Plant Cell Rep. 20: 235–243Google Scholar
  3. Carson MJ, Burdon RD, Carson SD, Firth A, Shelbourne CJA & Vincent TG (1989) Realising genetic gains in production forests. In: Proceedings IUFRO Working Parties on Douglas Fir, Lodgepole Pine, Sitka and Abies spp. Breeding Genetic Resources. Session: Genetic gains in production forests. Olympia, Washington.Google Scholar
  4. Charest, PJ, Calero N, Lachance D, Dalta RSS, Duchesne LC & Tsang EWT (1993) Microprojectile-DNA delivery in conifer species: factors affecting assessment of transient gene expression using the ß-glucuronidase reporter gene, Plant Cell Rep. 12: 189–193Google Scholar
  5. Charity JA, Holland L, Donaldson SS, Grace L & Walter C (2002) Agrobacterium-mediated transformation of Pinus radiata organogenic tissue using vacuum infiltration. Plant Cell Tiss. Org. Cult. 70: 51–60Google Scholar
  6. De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gosselé, Rao Movva N, Thompson C, van Montagu M & Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6: 2513–2518Google Scholar
  7. Finnegan J & McElroy D (1994) Transgene Inactivation: Plants Fight Back! Bio/Technology. 12: 883–888Google Scholar
  8. Gotz W, Dorn E, Ebert E, Leist KH & Kocher H (1983) HOE 39866, a new non-selective herbicide: Chemical and toxicological properties; Mode of action and metabolism. In: Proceedings of the Ninth Conference of the Asian Pacific Weed Science SocietyGoogle Scholar
  9. Grace L, Pearson T, Cranshaw N, Moody J, van der Maas S, Sabja AM & Walter C (2001) Towards the development of insect-resistant Pinus radiata. Abstracts of the 14th Biennial Meeting of the New Zealand Branch of IAPTC&B, Mount Ruapehu, New Zealand (p 53)Google Scholar
  10. Guerinot ML (2000) The Green Revolution strikes Gold. Science 287: 7984–7989Google Scholar
  11. Holland L, Gemmell JE, Charity JA & Walter C (1997) Foreign gene transfer into Pinus radiata cotyledons by Agrobacterium tumefaciens. NZ J. For. Sci. 27: 289–304Google Scholar
  12. Huang Y, Diner AM & Karnosky DF (1991) Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer: Larix Decidua. In Vitro Cell Dev. Biol. Plant 27: 201–207Google Scholar
  13. James C & Krattiger AF (1996) Global review of the field-testing and commercialisation of transgenic plants: 1986-1995, the first decade of crop biotechnology. International Service for the Acquisition of Agri-Biotech Applications (ISAAA) Brief No 1 ISAAA, Ithaca, NYGoogle Scholar
  14. Jefferson RA (1987) Assaying chimaeric genes: The uidA gene fusion system. Plant Mol. Biol. Rep. 5: 387–405Google Scholar
  15. Kendall HW, Beachy R, Eisner T, Gould F, Herdt R, Raven PH, Schell JS & Swaminathan MS (1997) Bioengineering of crops: Report of the World Bank. Environmentally and Socially Sustainable Development Monographs. Series No 23 World Bank, Washington, DCGoogle Scholar
  16. Klein TM, Wolf ED, Wu R & Sandford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327: 70–73Google Scholar
  17. Matzke MA & Matzke AJM (1995) How and why do plants inactivate homologous (trans) genes? Plant Physiol. 107: 679–685Google Scholar
  18. Mellerowicz EJ, Horgan K, Walden A, Coker A & Walter C (1998) PRFLL - a Pinus radiata homologue of FLORICAULA and LEAFY is expressed in buds containing vegetative shoot and undifferentiated male cone primordial. Planta 206: 619–629Google Scholar
  19. Mouradov A & Teasdale RD (1999) Family of genes involved at the early stages of ‘flower’ development in Radiata pine. Flowering Newsl. 27: 16–22Google Scholar
  20. Roy M, Jain RK, Rohila JS & Wu R (2000) Production of agronomically superior transgenic rice plants using Agrobacterium transformation methods: Present status and future perspectives. Curr. Sci. 79, No 7: 954–960Google Scholar
  21. Shelbourne CJA, Carson MJ & Wilcox MD (1989) New techniques in the genetic improvement of Radiata pine. Commonwealth For. Rev. 68: 3Google Scholar
  22. Simpson GG, Gendall AR & Dean C (1999) When to switch to flowering. Annu. Rev. Cell. Dev. Biol. 99: 519–550Google Scholar
  23. Smith DR (1996) Growth medium. US patent number: 5,565,355Google Scholar
  24. Stam M & Kooter JM (1997) The silence of genes in transgenic plants. Ann. Bot. 79: 3–12Google Scholar
  25. Strauss SH, Rottmann, Brunner AM & Sheppard LA (1995) Genetic engineering of reproductive sterility in forest tree. Mol. Breed. 1: 5–26Google Scholar
  26. Tandre K, Albert VA, Sundas A & Engstrom P (1995) Conifer homologues to genes that control floral development in angio-sperms. Plant Mol. Biol. 27: 69–78Google Scholar
  27. Tian L, Levée V, Metag R, Charest P & Seguin A (1999) Green fluorescent protein as a tool for monitoring transgene expression in forest tree species. Tree Physiol. 19: 541–546Google Scholar
  28. Tzfira T, Zuker A & Altman A (1998) Forest-tree biotechnology; genetic transformation and its application to future forests. Trends Biotechnol. 16: 439–446Google Scholar
  29. Tzfira T, Yarnitzky O, Vainstein A & Altman A (1996) Agrobacterium rhizogenes-mediated DNA transfer in Pinus halepensis Mill. Plant Cell Rep. 16: 26–31Google Scholar
  30. Vaucheret H, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Mourrain P, Palauqui JC & Vernhettes S (1998) Transgene-induced gene silencing in plants. Plant J. 16: 651–659Google Scholar
  31. Wagner A, Moody J, Grace LJ & Walter C (1997) Stable transformation of Pinus radiata based on selection with hygromycin B. NZ J. For. Sci. 27,3: 280–288Google Scholar
  32. Walden AR, Wang DY, Walter CW & Gardner RC (1998) A large family of TM3 orthologs in Pinus radiata includes two members with deletions of the conserved k domain. Plant Sci. 138: 167–176Google Scholar
  33. Walden AR, Walter C & Gardner RC (1999) Genes expressed in Pinus radiata male cones include homologs to anther specific and pathogenesis response genes. Plant Physiol. 121: 1103–1116Google Scholar
  34. Walter C, Smith DR, Connett MB, Grace L & White DWR (1994) A biolistic approach for the transfer and expression of a gusA reporter gene in embryogenic cultures of Pinus radiata. Plant Cell Rep. 14: 69–74Google Scholar
  35. Walter C, Carson SD, Menzies MI, Richardson T & Carson M (1998a) Review: Application of biotechnology to forestry - molecular biology of conifers, World J. Microbiol. Biotechnol. 14: 321–330Google Scholar
  36. Walter C, Grace LJ, Wagner A, Walden AR, White DWR, Donaldson SS, Hinton HH, Gardner RC & Smith DR (1998b) Stable transformation and regeneration of transgenic plants of Pinus radiata D. Don. Plant Cell Rep. 17: 460–468Google Scholar
  37. Walter C, Grace LJ, Donaldson SS, Moody J, Gemmell JE, van der Maas S, Kvaalen H & Loenneborg A (1999). An efficient biolistic transformation protocol for Picea abies (L) Karst embryogenic tissue and regeneration of transgenic plants. Can. J. For. Res. 2910: 1539–1546Google Scholar
  38. Wang D, Bradshaw RE, Walter C, Connett MB & Fountain DW (1997) Structural Characterisation of Pinus radiata mads-box DNA sequences isolated by PCR cloning. NZ J. For. Sci. 27: 3–10Google Scholar
  39. Wenck AR, Quinn M, Whetten RW, Pullman G & Sederoff R (1999) High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol. Biol. 39: 407–416Google Scholar
  40. Wilcox PH, Amerson HV, Kuhlman G, Liu GH, O'Malley DM & Sederoff RR (1996) Detection of a major gene for resistance to fusiform rust disease in loblolly pine by genome mapping. Proc. Natl. Acad. Sci. USA 93: 3859–3864Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Christian Walter
    • 1
  • Julia Charity
    • 1
  • Lynette Grace
    • 1
  • Kai Höfig
    • 1
  • Ralf Möller
    • 1
  • Armin Wagner
    • 1
  1. 1.New Zealand Forest Research Institute Ltd.RotoruaNew Zealandrequests

Personalised recommendations