Genetica

, Volume 115, Issue 1, pp 131–146

Genome size and developmental complexity

  • T. Ryan Gregory
Article

Abstract

Haploid genome size (C-value) is correlated positively with cell size, and negatively with cell division rate, in a variety of taxa. Because these associations are causative, genome size has the potential to impact (and in turn, be influenced by) organism-level characters affected by variation in either of these cell-level parameters. One such organismal feature is development. Developmental rate, in particular, has been associated with genome size in numerous plant, vertebrate, and invertebrate groups. However, rate is only one side of the developmental coin; the other important component is complexity. When developmental complexity is held essentially constant, as among many plants, developmental rate is the visibly relevant parameter. In this case, genome size can impose thresholds on developmental lifestyle (and vice versa), as among annual versus perennial plants. When developmental rate is constrained (as during time-limited amphibian metamorphosis), complexity becomes the notable variable. An appreciation for this rate-complexity interaction has so far been lacking, but is essential for an understanding of the relationships between genome size and development. Moreover, such an expanded view may help to explain patterns of variation in taxa as diverse as insects and fish. In each case, a hierarchical approach is necessary which recognizes the complex interaction of evolutionary processes operating at several levels of biological organization.

amphibians C-value paradox developmental rate differentiation fish hierarchy insects metamorphosis neoteny nucleotype paedomorphosis plants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachmann, K., 1972. Nuclear DNA and developmental rate in frogs. Quart. J. Florida Acad. Sci. 35: 225-231.Google Scholar
  2. Bachmann, K., K.L. Chambers & H.J. Price, 1985. Genome size and natural selection: observations and experiments in plants, pp. 267-276 in The Evolution of Genome Size, edited by T. Cavalier-Smith. Wiley, Chichester.Google Scholar
  3. Bemis, W.E., 1984. Paedomorphosis and the evolution of the Dipnoi. Paleobiology 10: 293-307.Google Scholar
  4. Bennett, M.D., 1971. The duration of meiosis. Proc. R. Soc. Lond. B 178: 277-299.Google Scholar
  5. Bennett, M.D., 1972. Nuclear DNA content and minimum generation time in herbaceous plants. Proc. R. Soc. Lond. B 181: 109-135.Google Scholar
  6. Bennett, M.D., 1976. DNA amount, latitude, and crop plant distribution. Env. Exp. Bot. 16: 93-108.Google Scholar
  7. Bennett, M.D., 1987. Variation in genomic form in plants and its ecological implications. New Phytol. 106 (Suppl.): 177-200.Google Scholar
  8. Bennett, M.D., I.J. Leitch & L. Hanson, 1998. DNA amounts in two samples of angiosperm weeds. Annal. Bot. 82 (Suppl. A): 121-134.Google Scholar
  9. Bullock, D. & A.L. Rayburn, 1991. Genome size variation in Southwestern US Indian maize populations may be a function of effective growing season. Maydica 36: 247-250.Google Scholar
  10. Camper, J.D., L.A. Ruedas, J.W. Bickham & J.R. Dixon, 1993. The relationship of genome size with developmental rates and reproductive strategies in five families of neotropical bufonoid frogs. Genet. (Life Sci. Adv.) 12: 79-87.Google Scholar
  11. Cavalier-Smith, T., 1985. Introduction: the evolutionary significance of genome size, pp. 1-36 in The Evolution of Genome Size, edited by T. Cavalier-Smith. Wiley, Chichester, UK.Google Scholar
  12. Cavalier-Smith, T., 1991. Coevolution of vertebrate genome, cell, and nuclear sizes, pp. 51-86 in Symposium on the Evolution of Terrestrial Vertebrates, edited by G. Ghiara et al. Mucchi, Modena.Google Scholar
  13. Chipman, A.D., O. Khaner, A. Hass & E. Tchernov, 2001. The evolution of genome size: what can be learned from anuran development? J. Exp. Zool. (Mol. Dev. Evol.) 291: 365-374.Google Scholar
  14. Commoner, B., 1964. Roles of deoxyribonucleic acid in inheritance. Nature 202: 960-968.Google Scholar
  15. Dimitri, P. & N. Junakovic, 1999. Revisiting the selfish DNA hypothesis: new evidence on accumulation of transposable elements in heterochromatin. Trends Genet. 15: 123-124.Google Scholar
  16. Duellman, W.E. & L. Trueb, 1994. Biology of Amphibians. Johns Hopkins University Press, Baltimore, MD.Google Scholar
  17. Eldredge, N., 1985. Unfinished Synthesis. Oxford University Press. Oxford, UK.Google Scholar
  18. Finston, T.L., P.D.N. Hebert & R.B. Foottit, 1995. Genome size variation in aphids. Insect Biochem. Mol. Biol. 25: 189-196.Google Scholar
  19. Garstang, W., 1951. Larval Forms with Other Zoological Verses. Basil Blackwell, Oxford.Google Scholar
  20. Goin, O.B., C.J. Goin & K. Bachmann, 1968. DNA and amphibian life history. Copeia 1968: 532-540.Google Scholar
  21. Gould, S.J., 1977. Ontogeny and Phylogeny. Harvard University Press, Cambridge, MA.Google Scholar
  22. Gould, S.J., 1998. Gulliver's further travels: the necessity and difficulty of a hierarchical theory of selection. Phil. Trans. R. Soc. Lond. B 353: 307-314.Google Scholar
  23. Gregory, T.R. & P.D.N. Hebert, 1999. The modulation of DNA content: proximate causes and ultimate consequences. Genome Res. 9: 317-324.Google Scholar
  24. Gregory, T.R., P.D.N. Hebert & J. Kolasa, 2000. Evolutionary implications of the relationship between genome size and body size in flatworms and copepods. Heredity 84: 201-208.Google Scholar
  25. Gregory, T.R., 2000. Nucleotypic effects without nuclei: genome size and erythrocyte size in mammals. Genome 43: 895-901.Google Scholar
  26. Gregory, T.R., 2001a. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol. Rev. 76: 65-101.Google Scholar
  27. Gregory, T.R., 2001b. Animal Genome Size Database. http:// www.genomesize.com.Google Scholar
  28. Gregory, T.R., 2001c. The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. Blood Cells Mol. Dis. 27: 830-843.Google Scholar
  29. Gregory, T.R., 2002. A bird's-eye view of the C-value enigma: genome size, cell size, and metabolic rate in the class Aves. Evolution 56: 121-130.Google Scholar
  30. Greilhuber, J., 1997. The problem of variable genome size in plants (with special reference to woody plants), pp. 13-34 in Cytogenetic Studies of Forest Trees and Shrub Species, edited by Z. Borzan & S.E. Schlarbaum. Croatian Forests, Faculty of Forestry, University of Zagreb, Croatia.Google Scholar
  31. Greilhuber, J., 1998. Intraspecific variation in genome size: a critical reassessment. Annal. Bot. 82 (Suppl. A): 27-35.Google Scholar
  32. Grime, J.P. & M.A. Mowforth, 1982. Variation in genome size-an ecological interpretation. Nature 299: 151-153.Google Scholar
  33. Grime, J.P., J.M.L. Shacklock & S.R. Band, 1985. Nuclear DNA contents, shoot phenology and species co-existence in a limestone grassland community. New Phytol. 100: 435-445.Google Scholar
  34. Harvey, P.H. & M.D. Pagel, 1991, The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford.Google Scholar
  35. Hinegardner, R., 1968. Evolution of cellular DNA content in teleost fishes. Am. Nat. 102: 517-523.Google Scholar
  36. Hinegardner, R., 1976. Evolution of genome size, pp. 179-199 in Molecular Evolution, edited by F.J. Ayala. Sinauer Associates, Sunderland.Google Scholar
  37. Horner, H.A. & H.C. Macgregor, 1983. C-value and cell volume: their significance in the evolution and development of amphibians. J. Cell Sci. 63: 135-146.Google Scholar
  38. Jockusch, E.L., 1997. An evolutionary correlate of genome size change in plethodontid salamanders. Proc. R. Soc. Lond. B: Biol. Sci. 264: 597-604.Google Scholar
  39. John, B. & G.L.G. Miklos, 1988. The Eukaryote Genome in Development and Evolution. Allen & Unwin, London.Google Scholar
  40. Joss, J.M.P., 1998. Are extant lungfish neotenic? Clin. Exp. Pharmacol. Physiol. 25: 733-735.Google Scholar
  41. Kalendar, R., J. Tanskanen, S. Immonen, E. Nevo & A.H. Schulman, 2000. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Natl. Acad. Sci. USA 97: 6603-6607.Google Scholar
  42. Laurie, D.A. & M.D. Bennett, 1985. Nuclear DNA content in the genera Zea and Sorghum. Intergeneric, interspecific and intraspecific variation. Heredity 55: 307-313.Google Scholar
  43. Lay, P.A. & J. Baldwin, 1999. What determines the size of teleost erythrocytes? Correlations with oxygen transport and nuclear volume. Fish Physiol. Biochem. 20: 31-35.Google Scholar
  44. Licht, L.E. & L.A. Lowcock, 1991. Genome size and metabolic rate in salamanders. Comp. Biochem. Physiol. 100B: 83-92.Google Scholar
  45. Lieberman, B.S. & Vrba, E.S., 1995. Hierarchy theory, selection, and sorting. BioScience 45: 394-399.Google Scholar
  46. Loman, J., 1999. Early metamorphosis in common frog Rana temporaria tadpoles at risk of drying: an experimental demonstration. Amphibia-Reptilia 20: 421-430.Google Scholar
  47. Marks, S.B. & A. Collazo, 1998. Direct development in Desmognathus aeneus (Caudata: Plethodontidae): a staging table. Copeia 1998: 637-648.Google Scholar
  48. Martin, C.C. & R. Gordon, 1995. Differentiation trees, a junk DNA molecular clock, and the evolution of neoteny in salamanders. J. Evol. Biol. 8: 339-354.Google Scholar
  49. McLaren, I.A., J.-M. Sévigny & C.J. Corkett, 1988. Body size, development rates, and genome sizes among Calanus species. Hydrobiologia 167/168: 275-284.Google Scholar
  50. Mirsky, A.E. & H. Ris, 1951. The desoxyribonucleic acid content of animal cells and its evolutionary significance. J. Gen. Physiol. 34: 451-462.Google Scholar
  51. Morescalchi, A., 1990. Cytogenetics and the problem of Lissamphibian relationships, pp. 1-19 in Cytogenetics of Amphibians and Reptiles, edited by E. Olmo. Birkhauser Verlag, Basel, Switzerland.Google Scholar
  52. Mowforth, M.A. & J.P. Grime, 1989. Intra-population variation in nuclear DNA amount, cell size and growth rate in Poa annua L. Funct. Ecol. 3: 289-295.Google Scholar
  53. Naranjo, C.A., M.R. Ferrari, A.M. Palermo & L. Poggio, 1998. Karyotype, DNA content and meiotic behaviour in five South American species of Vicia (Fabaceae). Annal. Bot. 82: 757-764.Google Scholar
  54. Nardi, I., R. Batistoni, S. Marracci & B. Lanza, 1999. Repetitive DNA components of the large Hydromantes genome: phylogenetic and molecular aspects. Herpetologica 55: 131-139.Google Scholar
  55. Oeldorf, E., M. Nishioka & K. Bachmann, 1978. Nuclear DNA amounts and developmental rate in holarctic anura. Z. Zool. Syst. Evolutionsforsch. 16: 216-224.Google Scholar
  56. Ohno, S., 1974. Animal Cytogenetics, Vol. 4: Chordata, No. 1: Protochordata, Cyclostomata, and Pisces. Gebrüder Borntraeger, Berlin.Google Scholar
  57. Olmo, E., 1983. Nucleotype and cell size in vertebrates: a review. Bas. Appl. Histochem. 27: 227-256.Google Scholar
  58. Pagel, M. & R.A. Johnstone, 1992. Variation across species in the size of the nuclear genome supports the junk-DNA explanantion for the C-value paradox. Proc. Royal Soc. Lond. B 249: 119-124.Google Scholar
  59. Petrov, D.A., T.A. Sangster, J.S. Johnston, D.L. Hartl & K.L. Shaw, 2000. Evidence for DNA loss as a determinant of genome size. Science 287: 1060-1062.Google Scholar
  60. Pinder, A.W., K.B. Storey & G.R. Ultsch, 1992. Estivation and hibernation, pp. 250-274 in Environmental Physiology of the Amphibians, edited by M.E. Feder & W.W. Burggren. University of Chicago Press, Chicago.Google Scholar
  61. Poggio, L., M. Rosato, A.M. Chiavarino & C.A. Naranjo, 1998. Genome size and environmental correlations in maize (Zea mays ssp. mays, Poaceae). Annal. Bot. 82 (Suppl. A): 107-115.Google Scholar
  62. Rayburn, A.L., H.J. Price, J.D. Smith & J.R. Gold, 1985. C-band heterochromatin and DNA content in Zea mays. Am. J. Bot. 72: 1610-1617.Google Scholar
  63. Rayburn, A.L., J.W. Dudley & D.P. Biradar, 1994. Selection for early flowering results in simultaneous selection for reduced nuclear DNA content in maize. Plant Breed. 112: 318-322.Google Scholar
  64. Resslar, P.M., J.M. Stucky & J.P. Miksche, 1981. Cytophotometric determination of the amount of DNA in Arachis L. sect. Arachis (Leguminosae). Am. J. Bot. 68: 149-153.Google Scholar
  65. Roth, G., B. Rottluff, W. Grunwald, J. Hanken & R. Linke, 1990. Miniaturization in plethodontid salamanders (Caudata: Plethodontidae) and its consequences for the brain and visual system. Biol. J. Linn. Soc. 40: 165-190.Google Scholar
  66. Roth, G., K.C. Nishikawa, C. Naujoks-Manteuffel, A. Schmidt & D.B. Wake, 1993. Paedomorphosis and simplification in the nervous system of salamanders. Brain Behav. Evol. 42: 137-170.Google Scholar
  67. Roth, G. & A. Schmidt, 1993. The nervous system of plethodontid salamanders: insight into the interplay between genome, organism, behavior, and ecology. Herpetologica 49: 185-194.Google Scholar
  68. Roth, G., J. Blanke & D.B. Wake, 1994. Cell size predicts morphological complexity in the brains of frogs and salamanders. Proc. Natl. Acad. Sci. USA 91: 4796-4800.Google Scholar
  69. Roth, G., K.C. Nishikawa & D.B. Wake, 1997. Genome size, secondary simplification, and the evolution of the brain in salamanders. Brain Behav. Evol. 50: 50-59.Google Scholar
  70. SanMiguel, P. & J.L. Bennetzen, 1998. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Annal. Bot. 82 (Suppl. A): 37-44.Google Scholar
  71. SanMiguel, P., B.S. Gaut, A. Tikhonov, Y. Nakajima & J.L. Bennetzen, 1998. The paleontology of intergene retrotransposons of maize. Nature Genet. 20: 43-45.Google Scholar
  72. Sessions, S.K. & A. Larson, 1987. Developmental correlates of genome size in plethodontid salamanders and their implications for genome evolution. Evolution 41: 1239-1251.Google Scholar
  73. Shaffer, H.B. & S.R. Voss, 1996. Phylogenetic and mechanistic analysis of a developmentally integrated character complex: alternate life history modes in ambystomatid salamanders. Am. Zool. 36: 24-35.Google Scholar
  74. Shahbasov, V.G. & A.V. Ganchenko, 1990. Nonspecific tolerance and DNA content in genome of amphibians. Dokl. Akad. Nauk SSSR 314: 971-975.Google Scholar
  75. Singh, K.P., S.N. Raina & A.K. Singh, 1996. Variation in chromosomal DNA associated with the evolution of Arachis species. Genome 39: 890-897.Google Scholar
  76. Srivastava, S. & U.C. Lavania, 1991. Evolutionary DNA variation in Papaver. Genome 34: 763-768.Google Scholar
  77. Swift, H., 1950. The constancy of desoxyribose nucleic acid in plant nuclei. Proc. Natl. Acad. Sci. USA 36: 643-654.Google Scholar
  78. Szarski, H., 1983. Cell size and the concept of wasteful and frugal evolutionary strategies. J. Theoret. Biol. 105: 201-209.Google Scholar
  79. Thomson, K.S., 1972. An attempt to reconstruct evolutionary changes in the cellular DNA content of lungfish. J. Exp. Zool. 180: 363-372.Google Scholar
  80. Thomson, K.S. & K. Muraszko, 1978. Estimation of cell size and DNA content in fossil fishes and amphibians. J. Exp. Zool. 205: 315-320.Google Scholar
  81. Vignali, R. & I. Nardi, 1996. Unusual features of the urodele genome: do they have a role in evolution and development? Intl. J. Dev. Biol. 40: 637-643.Google Scholar
  82. Vinogradov, A.E., 1995. Nucleotypic effect in homeotherms: body mass-corrected basal metabolic rate of mammals is related to genome size. Evolution 49: 1249-1259.Google Scholar
  83. Vinogradov, A.E., 1997. Nucleotypic effect in homeotherms: bodymass independent metabolic rate of passerine birds is related to genome size. Evolution 51: 220-225.Google Scholar
  84. Vinogradov, A.E., 1999. Genome in toto. Genome 42: 361-362.Google Scholar
  85. Wake, D.B. & G. Roth, 1989. Paedomorphosis: new evidence for its importance in salamander evolution. Am. Zool. 29: 134A.Google Scholar
  86. Wake, D.B. & S.B. Marks, 1993. Development and evolution of plethodontid salamanders: a review of prior studies and a prospectus for future research. Herpetologica 49: 194-203.Google Scholar
  87. Watanabe, K., T. Yahara, T. Denda & K. Kosuge, 1999. Chromosomal evolution in the genus Brachyscome (Asteraceae, Astereae): statistical tests regarding correlation between changes in karyotype and habit using phylogenetic information. J. Plant Res. 112: 145-161.Google Scholar
  88. White, M.M. & I.A. McLaren, 2000. Copepod development rates in relation to genome size and 18S rDNA copy number. Genome 43: 750-755.Google Scholar
  89. Whiteman, H.H., 1994. Evolution of facultative paedomorphosis in salamanders. Quart. Rev. Biol. 69: 205-221.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • T. Ryan Gregory
    • 1
  1. 1.Department of ZoologyUniversity of GuelphGuelphCanada

Personalised recommendations