Journal of Radioanalytical and Nuclear Chemistry

, Volume 243, Issue 2, pp 559–562 | Cite as

Determination of Uranium in Human Hair by Acid Digestion and FIAS-ICPMS

  • R. Gonnen
  • R. Kol
  • Y. Laichter
  • P. Marcus
  • L. Halicz
  • A. Lorber
  • Z. Karpas

Abstract

The content of heavy metals in human hair may serve as an indicator of occupational or environmental exposure to metal compounds. However, before such exposure can be determined, the level of the element in a "normal" population must be established. The concentration of uranium in human hair was measured by flow injection — inductively coupled plasma mass spectrometry (FIAS-ICPMS) after acid digestion of the hair samples. All hair samples were rinsed in order to remove external contamination prior to the digestion in a 2:1 solution of concentrated nitric acid and 30% hydrogen peroxide. The limit of detection of the method, for a 50 mg hair sample, was 0.015µg/g, mainly due to the presence of impurities in the hydrogen peroxide. The range of uranium concentration in the initial test group was found to be 0.01–0.18 µg/g. The mean and median values of the entire study population were 0.062 and 0.050 µg U/g hair, respectively. Differences between the following sub-populations: male and female, smokers and non-smokers and people below and above 45 years of age were examined. The only statistically significant difference was found in the latter group (p = 0.03).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. E. Kollmer, Report NAHRES-22, Intern. Atomic Energy Agency, Vienna, 1994, p. 24.Google Scholar
  2. 2.
    A. A. Kist, R. I. Radyuk, L. I. Zhuk, V. P. Pikul, A. D. Belyaev, J. Alloys Comp., 213/214 (1994) 81.Google Scholar
  3. 3.
    Y. Yoshinaga, Y. Shibata, M. Morita, Clin. Chem., 39 (1993) 165.Google Scholar
  4. 4.
    T. Keller, A. Miki, P. Regenscheit, R. Dirnhofer, A. Schneider, H. Tsuchihashi, Forensic Sci. Intern., 94 (1998) 55.Google Scholar
  5. 5.
    A. Bortoli, M. Gerotto, M. Marchiori, R. Palonta, A. Troncon, Microchem. J., 46 (1992) 167.Google Scholar
  6. 6.
    A. R. Byrne, L. Benedik, Sci. Total Environ., 107 (1991) 143.Google Scholar
  7. 7.
    Z. Karpas, A. Lorber, L. Halicz, I. Gavrieli, Pittsburgh Conference, New Orleans, 1998, Paper 990.Google Scholar
  8. 8.
    A. Lorber, Z. Karpas, L. Halicz, Anal. Chim. Acta, 334 (1996) 295.Google Scholar
  9. 9.
    N. Mikeley, M. T. W. Dias-Carneiro, C. L. P. Da Silveira, Sci. Total Environ., 218 (1998) 9.Google Scholar
  10. 10.
    E. Hac, M. Krzyzanowski, J. Krechniak, Sci. Total Environ., 224 (1998) 81.Google Scholar
  11. 11.
    E. Cooper, Statistics for Experimentalists, Pergamon Press, Oxford, 1969.Google Scholar
  12. 12.
    H. M. Wadsworth, Jr., Handbook of Statistical Methods for Engineers and Scientists, Chapter 12: Nonparametric Statistics by J. D. Gibbons, 2nd ed., McGraw-Hill.Google Scholar
  13. 13.
    A. Lorber, L. Halicz, Z. Karpas, E. Elish, J. Roiz, R. Marko, Plasma Source Mass Spectrometry: Developments and Applications, G. Holland and S. D. Tanner (Eds), Royal Chemical Society, Cambridge, UK, 1997.Google Scholar
  14. 14.
    A. O. Lee Jones, R. M. Jacobes, N. B. Ranney, E. L. Summers, R. Bratter and P. Schramel (Eds), Verlag Walter de Gruyter, Berlin-New York, 1998.Google Scholar
  15. 15.
    Y. Igarashi, A. Yamakawa, Y. Oki, R. Seki, N. Ikeda, J. Radioanal. Nucl. Chem., 135 (1989) 157.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2000

Authors and Affiliations

  • R. Gonnen
    • 1
  • R. Kol
    • 1
  • Y. Laichter
    • 1
  • P. Marcus
    • 1
  • L. Halicz
    • 2
  • A. Lorber
    • 1
  • Z. Karpas
    • 1
  1. 1.Nuclear Research Center, NegevBeer ShevaIsrael 84190
  2. 2.Geological Survey of IsraelJerusalemIsrael

Personalised recommendations