Advertisement

D-Amino Acids in Living Higher Organisms

  • Noriko FujiiEmail author
Article

Abstract

The homochirality of biological amino acids (L-amino acids) andof the RNA/DNA backbone (D-ribose) might have become establishedbefore the origin of life. It has been considered that D-aminoacids and L-sugars were eliminated on the primitive Earth.Therefore, the presence and function of D-amino acids in livingorganisms have not been studied except for D-amino acids in thecell walls of microorganisms. However, D-amino acids wererecently found in various living higher organisms in the form offree amino acids, peptides, and proteins. Free D-aspartate andD-serine are present and may have important physiologicalfunctions in mammals. D-amino acids in peptides are well knownas opioid peptides and neuropeptides. In protein, D-aspartateresidues increase during aging. This review deals with recentadvances in the study of D-amino acids in higher organisms.

aging D-amino acid development homochirality isomerization neuropeptides opioid peptides Origin of life racemization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amiche, M., Sagan, S., Mor, A., Delfour, A. and Nicolas, P.: 1989, (Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2): A Potent and Fully Specific Agonist for the Delta Opioid Receptor, Molecular Pharmacol. 35, 774–779.Google Scholar
  2. Broccardo, M., Erspamer, V., Falconieri Erspamer, G., Improta, G., Linari, G., Melchiorri, P. and Montecucchi, P. C.: 1981, Pharmacological Data on Dermorphins, a New Class of Potent Opioid Peptides from Amphibian Skin, Br. J. Pharmacol. 73, 625–631.Google Scholar
  3. Corrigan, J. J.: 1969, D-amino Acids in Animals, Science 164, 142–149.Google Scholar
  4. De Jong, W. W., Terwindt, E. C. and Bloemendal, H.: 1975, Primary Structures of the Alphacrystallin A Chains of Seven Mammalian Species, FEBS Lett. 58, 310–313.Google Scholar
  5. Dubin, R. A., Ally, A. H., Chung, S. and Piatigorskym, J.: 1990, Human a B-crystallin Gene and Preferential Promoter Function in Lens, Genomics 7, 594–601.Google Scholar
  6. Dunlop, D. S., Niedle, A., MaHale, D., Dunlop, D. M. and Lajtha, A.: 1986, The Presence of Free D-aspartic Acid in Rodents and Man, Biochem. Biophys. Res. Commun. 141, 27–32.Google Scholar
  7. Emmons, T. and Takemoto, L.: 1992, Age-dependent Loss of the C-terminal Amino Acid from Alpha Crystallin, Exp. Eye Res. 55, 551–554.Google Scholar
  8. Erspamer, V., Melchiorri, P., Falconieri-Erspamer, G., Negri, L., Corsi, R., Severini, C., Barra, D., Simmaco, M. and Kreil, G.: 1989, Deltorphins: A Family of Naturally Occurring Peptides with High Affinity and Selectivity for Delta Opioid Binding Sites, Proc. Natl. Acad. Sci. U.S.A. 86, 5188–5192.Google Scholar
  9. Fisher, G. H., Garcia, N. M., Payan, I. L., Cadilla-Perezrios, R., Sheremata, W. A. and Man, E. H.: 1986, D-aspartic Acid in Purified Myelin and Myelin Basic Protein, Biochem. Biophys. Res. Commun. 135, 683–687.Google Scholar
  10. Fujii, N., Muraoka, S. and Harada, K.: 1989, Purification and Characterization of a Protein Containing D-aspartic Acid in Bovine Lens, Biochim. Biophys. Acta 999, 239–242.Google Scholar
  11. Fujii, N., Muraoka, S., Satoh, K., Hori, H. and Harada, K.: 1991, Racemization of Aspartic Acids at Specific Sites in Alpha A-crystallin from Aged Human Lens, Biomedical Research 12, 315–321.Google Scholar
  12. Fujii, N., Satoh, K., Harada, K. and Ishibashi, Y.: 1994a, Simultaneous Stereoinversion and Isomerization at Specific Aspartic Acid Residues in Alpha A-crystallin from Aged Human Lens, J. Biochem. 116, 663–669.Google Scholar
  13. Fujii, N., Ishibashi, Y., Satoh, K., Fujino, M. and Harada, K.: 1994b, Simultaneous Racemization and Isomerization at Specific Aspartic Acid Residues in Alpha B-crystallin from Aged Human Lens, Biochim. Biophys. Acta. 1204, 157–163.Google Scholar
  14. Fujii, N., Momose, Y. and Harada, K.: 1996, Kinetic Study of Racemization of Aspartyl Residues in Model Peptides of Alpha A-crystallin, Int. J. Peptide Protein Res. 48, 118–122.Google Scholar
  15. Fujii, N., Momose, Y., Ishibashi, Y., Uemura, T., Takita, M. and Takehana, M.: 1997a, Specific Racemization and Isomerization of the Aspartyl Residue of Alpha A-crystallin Due to UV-B Irradiation, Exp. Eye Res. 65, 99–104.Google Scholar
  16. Fujii, N., Momose, Y., Yamasaki, M., Yamagaki, T., Nakanishi, H., Uemura, T., Takita, M. and Ishii, N.: 1997b, The Conformation Formed by the Domain after Alanine-155 Induces Inversion of Aspartic Acid-151 in Alpha A-crystallin from Aged Human Lenses, Biochem. Bipohys. Res. Commun. 239, 918–923.Google Scholar
  17. Fujii, N., Harada, K., Momose, Y., Ishii, N. and Akaboshi, M.: 1999a, D-and Beta-amino Acid Formation Induced by a Chiral Field within a Human Lens Protein during Aging, Biophys. Biochem. Res. Commun. 263, 322–326.Google Scholar
  18. Fujii, N., Takemoto, L. J., Momose, Y., Matsumoto, S., Hiroki, K. and Akaboshi, M.: 1999b, Formation of Four Isomers at Asp-151 Residue of Aged Human Alpha A-crystallin by Natural Aging, Biophys. Biochem. Res. Commun. 265, 746–751.Google Scholar
  19. Fujii, N., Mastumoto, S., Hiroki, K. and Takemoto, L. J.: 2001, Inversion and Isomerization of Asp-58 Residue in Human Alpha A-crystallin from Normal Aged Lenses and Cataractous Lenses, Biochim. Biophys. Acta 1549, 179–187.Google Scholar
  20. Fujimoto, K., Kubota, I., Yasuda-Kamatani, Y., Minakata, H., Nomoto, K., Yoshida, M., Harada, A., Muneoka, Y. and Kobayashi, M.: 1991, Purification of Achatin-I from the Atria of the African Giant Snail, Achatina fulica, and its Possible Function, Biochem. Biophys. Res. Commun. 177, 847–853.Google Scholar
  21. Geiger, T. and Clarke, S.: 1987, Deamidation, Isomerization and Racemization at Asparaginyl and Aspartyl Residues in Peptides. Succinimide-linked Reactions that Contribute to Protein Degradation, J. Biol. Chem. 262, 785–794.Google Scholar
  22. Groenen, P. J. T. A., van den IJssel, P. R. L. A., Voorter, C. E. M., Bloemendal, H. and de Jong, W. W.: 1990, Site-specific Racemization in Aging Alpha A-crystallin, FEBS Lett. 269, 109–112.Google Scholar
  23. Hamase, K., Homma, H., Takigawa, Y., Fukushima, T., Santa, T. and Imai, K.: 1997, Regional Distribution and Postnatal Changes of D-amino Acids in Rat Brain, Biochim. Biophys. Acta 1334, 214–222.Google Scholar
  24. Hashimoto, A., Kumashiro, S., Nishikawa, T., Oka, T., Takahashi, K., Mito, T., Takashima, S., Doi, N., Mizutani, Y., Yamazaki, T., Kaneko, T. and Ootomo, E.: 1993, Embryonic Development and Postnatal Changes in Free D-aspartate and D-serine in the Human Prefrontal Cortex, J. Neuchem. 61, 348–351.Google Scholar
  25. Hashimoto, A., Oka, T. and Nishikawa, T.: 1995, Anatomical Distribution and Postnatal Changes in Endogenous Free D-aspartate and D-serine in Rat Brain and Periphery, Eur. J. Neurosci. 7, 1657–1663.Google Scholar
  26. Hashimoto, A. and Oka, T: 1997, Free D-aspartate and D-serine in the Mammalian Brain and Periphery, Prog Neurobiol. 52, 325–353.Google Scholar
  27. Heck. S. D., Siok, C. J., Krapcho, K. J., Kelbaugh, P. R., Thadeio, P. F., Welch, M. J., Williams, R. D., Ganong, A. H., Kelly, M. E., Lanzetti, A. J. et al.: 1994, Functional Consequences of Posttranslational Isomerization of Ser46 in a Calcium Channel Toxin, Science 266, 1065–1068.Google Scholar
  28. Helfman, P. M. and Bada, J. L.: 1975, Aspartic Acid Racemization in Tooth Enamel from Living Humans, Proc. Natl. Acad. Sci. U.S.A. 72, 2891–2894.Google Scholar
  29. Helfman, P. M. and Bada, J. L.: 1976, Aspartic Acid Racemization in Dentine as a Measure of Aging, Nature 262, 279–281.Google Scholar
  30. Kamatani, Y., Minakata, H., Kenny, P. T., Iwashita, T., Watanabe, K., Funase, K., Sun, X. P., Yongsiri, A., Kim, K. H., Novales-Li, P., Novales, E. T., Kanapi, C. G., Takeuchi, H. and Nomoto, K.: 1989, Protein Achatin-I, an Endogenous Neuroexcitatory Tetrapeptide from Achatina Fulica Ferussac Containing a D-amino Acid Residue, Biochem. Biophys. Res. Commun. 160, 1015–1020.Google Scholar
  31. Kamei, A., Iwase, H. and Masuda, K.: 1997, Cleavage of Amino Acid Residues from the Alpha A and Alpha B-crystallin in Human Crystallin Lens during Aging, Biochem. Biophys. Res. Comm. 231, 373–378.Google Scholar
  32. Kaneko, I., Yamada, N., Sakuraba, Y., Kamenosono, M. and Tutumi, S.: 1995, Suppression of Mitochondrial Succinate Dehydrogenase, a Primary Target of Beta-amyloid, and its Derivative Racemized at Ser Residue, J. Neurochem. 65, 2585–2593.Google Scholar
  33. Kreil, G.: 1994, Peptides Containing a D-amino Acid from Frogs and Molluscs, J. Biol. Chem. 269 10967–10970.Google Scholar
  34. Kuwada, M., Teramoto, T., Kumagaye, K. Y., Nakajima, K., Watanabe, T., Kawai, T., Kawakami, Y., Niidome, T., Sawada, K., Nishizawa, Y. and Katayama, K.: 1994, Omega-agatoxin-TK Containing D-serine at Position 46, but not Synthetic Omega-[L-Ser46]agatoxin-TK, Exerts Blockade of P-type Calcium Channels in Cerebellar Purkinje Neurons, Mol. Pharmacol. 46, 587–593.Google Scholar
  35. Long, Z., Homma, H., Lee, J. A., Fukushima, T., Santa, T., Iwatsubo, T., Yamada, R. and Imai, K.: 1998, Biosynthesis of D-aspartate in Mammalian Cells, FEBS Lett. 434, 231–235.Google Scholar
  36. Masters, P. M., Bada, J. L. and Zigler Jr., J. S.: 1977, Aspartic Acid Racemization in the Human Lens during Aging and in Cataract Formation, Nature 268, 71–73.Google Scholar
  37. Masters, P. M.: 1983, Stereochemically Altered Noncollagenous Protein from Human Dentin, Calcif. Tissue Int. 35, 43–47.Google Scholar
  38. Miesbauer, L. R., Zhou, X., Yang, Z., Yang, Z., Sun, Y., Smith, D. L. and Smith, J. B.: 1994, Posttranslational Modifications of Water-soluble Human Lens Crystallins from Young Adults, J. Biol. Chem. 269, 12494–12502.Google Scholar
  39. Momose, Y., Fujii, N., Kodama, T., Yamagaki, Y., Nakanishi, H. and Kodama, M.: 1998, Specific Racemization of the Aspartyl Residue of Alpha A-Crystallin in Aged Mouse Lenses, Viva Origino 26, 329–340.Google Scholar
  40. Montecucchi, P. C., de Castiglione, R., Piani, S., Gozzini, L. and Erspamer, V.: 1981, Amino Acid Composition and Sequence of Dermorphin, a Novel Opiate-like Peptide from the Skin of Phyllomedusa sauvagei, Int. J. Pept. Protein Res., 17275-17283.Google Scholar
  41. Mor, A., Delfour, A., Sagan, S., Amiche, M., Pradelles, P., Rossier, J. and Nicolas, P.: 1989, Isolation of Dermenkephalin from Amphibian Skin, a High-affinity Delta-selective Opioid Heptapeptide Containing a D-amino Acid Residue, FEBS Lett. 255, 269–274.Google Scholar
  42. Muraoka, S., Fujii, N., Ueda, Y., Mitsui, Y., Satoh, K. and Harada, K.: 1991, Racemization of Aspartic Acid in Alpha A-crystallin of Bovine Lenses, Biomedical Research 12, 61–64.Google Scholar
  43. Nagata, Y., Horiike, K. and Maeda, T.: 1994, Distribution of Free D-serine in Vertebrate Brains, Brain Res. 634, 291–295.Google Scholar
  44. Nagata, Y., Homma, H., Lee, J. A. and Imai, K.: 1999, D-Aspartate Stimulation of Testosterone Synthesis in Rat Leydig Cells, FEBS Lett. 444, 160–164.Google Scholar
  45. Niedle, A. and Dunlop, D. S.: 1990, Developmental Changes in Free D-aspartic Acid in the Chicken Embryo and in the Neonatal Rat, Life Sci. 46, 1517–1522.Google Scholar
  46. Ohta, N., Kubota, I., Takao, T., Shimonishi, Y., Yasuda-Kamatani, Y., Minakata, H., Nomoto, K., Muneoka, Y. and Kobayashi, M.: 1991, Fulicin, a Novel Neuropeptide Containing a D-amino Acid Residue Isolated from the Ganglia of Achatina fulica, Biochem. Biophys. Res. Commun. 178, 486–493.Google Scholar
  47. Ohtani, S., Yamamoto, T., Masushima, Y. and Kobayashi, Y.: 1998, Changes in the Amount of Daspartic Acid in the Femur with Age, Growth Dev. Aging 62, 141–148.Google Scholar
  48. Powell, J. T., Vine, N. and Crossman, M.: 1992, On the Accumulation of D-aspartate in Elastin and Other Proteins of the Ageing Aorta, Atherosclerosis 97, 201–208.Google Scholar
  49. Richter, K., Egger, R. and Kreil, G.: 1987, D-alanine in the Frog Skin Peptide Dermorphin is Derived from L-alanine in the Precursor, Science 238, 200–202.Google Scholar
  50. Roher, A. E., Lowenson, J. D., Clarke, S., Wolkow, C., Wang, R., Cotter, R. J., Reardon, I. M., Zurcher-Neely, H. A., Heinrikson, R. L., Ball, M. J. and Greenberg, B. D.: 1993, Structural Alterations in the Peptide Backbone of Beta-amyloid Core Protein may Account for its Deposition and Stability in Alzheimer's Disease, J. Biol. Chem. 268, 3072–3083.Google Scholar
  51. Sakai, K., Homma, H., Lee, J. A., Fukushima, T., Santa, T. and Imai, K.: 1998, Localization of D-aspartic Acid in Elongate Spermatids in Rat Testis, Arch. Biochem. Biophys. 351, 96–105.Google Scholar
  52. Shapira, R. and Chou, C. H.: 1987, Differential Racemization of Aspartate and Serine in Human Myelin Basic Protein, Biochem. Biophys. Res. Commun. 146, 1342–1349.Google Scholar
  53. Stephanson, R. C. and Clarke, S.: 1989, Succinimide Formation from Aspartyl and Asparginyl Peptides as a Model for the Spontaneous Degradation of Proteins, J. Biol. Chem. 264, 6164–6170.Google Scholar
  54. Takemoto, L.: 1991, Truncation of Alpha A-crystallin from the Human Lens, Exp. Eye Res. 53, 811–813.Google Scholar
  55. Takemoto, L., Horwitz, J. and Emmons, T.: 1992, Oxidation of the N-terminal Methionine of Lens Alpha-A Crystallin, Curr. Eye Res. 11, 651–655.Google Scholar
  56. Takemoto, L.: 1996a, Differential Phosphorylation of a A-crystallin in Human Lens of Different Age, Exp. Eye Res. 62, 499–504.Google Scholar
  57. Takemoto, L.: 1996b, Increase in the Intramolecular Disulfide Bonding of Alpha-A Crystallin during Aging of the Human Lens, Exp. Eye Res. 63, 585–590.Google Scholar
  58. Tomiyama, T., Asano, S., Furiya, Y., Shirasawa, T., Endo, N. and Mori, H.: 1994, Racemization of Asp23 Residue Affects the Aggregation Properties of Alzheimer Amyloid Beta Protein Analogues, J. Biol. Chem. 269, 10205–10208.Google Scholar
  59. Tyler-Cross, R. and Schirch, V.: 1991, Effects of Amino Acid Sequence, Buffers, and Ionic Strength on the Rate and Mechanism of Deamidation of Asparagine Residues in Small Peptides, J. Biol. Chem. 266, 22549–22556.Google Scholar
  60. Voorter, C. E. M., De Haard-Hoekman, W. A., Van den Otelaar, P. J. M., Bloemendal, H. and De Jong, W. W.: 1988, Spontaneous Peptide Bond Cleavage in Aginga-crystallin Through a Succinimide Intermediate, J. Biol. Chem 263, 19020–19023.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Research Reactor InstituteKyoto University KumatoriSennan, OsakaJapan

Personalised recommendations