, Volume 15, Issue 3, pp 251–259 | Cite as

Intracellular magnesium and magnesium buffering

  • Robert D. Grubbs


The development of new techniques for measuring intracellular free Mg2+ during the 1980s has provided investigators with the tools needed to produce new insights into the regulation of cellular magnesium. Within the limits of this technology, it appears that all mammalian cells maintain free cytosolic Mg2+ levels within the fairly narrow range of 0.25–1 mM. While transport mechanisms and sequestration within cellular organelles will contribute to this regulation, it is binding of Mg2+ to an as yet poorly defined system of buffers that is largely responsible for determining the set point of this regulation. The lack of an adequately Mg2+-selective ionophore remains an impediment to progress in this area.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez-Leefmans FJ, Gamino SM, Giraldez F, Gonzalez-Serratos H. 1986 Intracellular free magnesium in frog skeletal muscle fibres measured with ion-selective microelectrodes. J Physiol (Lond) 378, 461-483.Google Scholar
  2. Amano T, Matsubara T, Watanabe J, Nakayama S, Hotta N. 2000 Insulin modulation of intracellular free magnesium in heart: Involvement of protein kinase C. Brit J Pharmacol 130, 731-738.Google Scholar
  3. Blatter L. 1990 Intracellular free magnesium in frog skeletal muscle studied with a new type of magnesium-selective microelectrode: Interactions between magnesium and sodium in the regulation of [Mg]i. Pflugers Arch 416, 238-246.Google Scholar
  4. Buri A, Chen S, Fry CH, Illner H, Kickenweiz E, McGuigan JAS, Noble, D, Powell T, Twist VW. 1993 The regulation of intracellular Mg2+ in guinea-pig heart, studied with Mg2+-selective microelectrodes and fluorochromes. Exp Physiol 78, 221-233.Google Scholar
  5. Buri A, McGuigan JAS. 1990 Intracellular free magnesium and its regulation studied in isolated ferret ventricular muscle with ion-selective microelectrodes. Exp Physiol 75, 751-761.Google Scholar
  6. Clarke K, Kashiwaya Y, King MT, Gates D, Keon CA, Cross HR, Radda GK, Veech RL. 1996 The β/α peak height ratio of ATP: A measure of free [Mg2+] using 31P NMR. J Biol Chem 271(35), 21142-21150.Google Scholar
  7. Cohen S. 1983 Simultaneous 13C and 31P NMR studies of perfused rat liver. J Biol Chem 258, 14294-14308.Google Scholar
  8. Cohen SM, Burt CT. 1977 31P Nuclear magnetic relaxation studies of phosphocreatine in intact muscle: Determination of intracellular free magnesium. Proc Natl Acad Sci USA 74(10), 4271-4275.Google Scholar
  9. Cohn M, Hughes TR. 1962 Nuclear magnetic resonance spectra of adenosine di-and triphosphate. II. Effects of complexing with divalent cations. J Biol Chem 237, 176-181.Google Scholar
  10. Dawson JB, Heaton FW. 1961 Determination of magnesium in biological materials by atomic absorption spectrophotometry. Biochem J 80, 99-106.Google Scholar
  11. Deber CM, Tom-Kun J, Mack E, Grinstein S. 1985 Bromo-A23187: A nonfluorescent calcium ionophore for use with fluorescent probes. Anal Biochem 146, 349-352.Google Scholar
  12. Delva PT, Pastori C, Degan M, Montesi GD, Lechi A. 1996 Intra-lymphocyte free magnesium in a group of subjects with essential hypertension. Hypertens 28, 433-439.Google Scholar
  13. Di Francesco A, Desnoyer RW, Covacci V, Wolf FI, Romani A, Cittadini A, Bond M. 1998 Changes in magnesium content and subcellular distribution during retinoic acid-induced differentiation of HL60 cells. Arch Biochem Biophys 360(2), 149-157.Google Scholar
  14. Di Virgilio F, Fasolato C, Steinberg TH. 1989 Inhibitors of membrane transport system for organic cations block fura-2 excretion from PC12 and N2A cells. Biochem J 256, 959-963.Google Scholar
  15. Fatholahi M, LaNoue K, Romani A, Scarpa A. 2000 Relationship between total and free cellular Mg2+ during metabolic stimula258 tion of rat cardiac myocytes and perfused heart. Arch Biochem Biophys 374(2), 395-401.Google Scholar
  16. Flatman PW. 1988 The control of red cell magnesium. Magnes Res 1, 5-11.Google Scholar
  17. Flatman PW, Lew VL. 1980 Magnesium buffering in intact human red blood cells measured using the ionophore A23187. J Physiol (Lond) 305, 13-30.Google Scholar
  18. Fujise H, Cruz P, Reo NV, Lauf PK. 1991 Relationship between total magnesium concentration and free intracellular magnesium in sheep red blood cells. Biochim Biophys Acta 1094, 51-54.Google Scholar
  19. Gaussin V, Gailly P, Gillis J-M, Hue L. 1997 Fructose-induced increase in intracellular free Mg2+ ion concentration in rat hepatocytes: Relation with enzymes of glycogen metabolism. Biochem J 326, 823-827.Google Scholar
  20. Gotoh H, Kajikawa M, Kato H, Suto K. 1999 Intracellular Mg2+ surge follows Ca2+ increase during depolarization in cultured neurons. Brain Res 828, 163-168.Google Scholar
  21. Grubbs RD, Beltz PA, Koss KL. 1991 Practical considerations for using mag-fura-2 to measure cytosolic free magnesium. Magnes Trace Elem 10, 142-150.Google Scholar
  22. Grubbs RD, Walter A. 1994 Determination of cytosolic Mg2+ activity and buffering in BC3H-1 cells with mag-fura-2. Mol Cell Biochem 136, 11-22.Google Scholar
  23. Grynkiewicz G, Poenie M, Tsien RY. 1985 A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260, 3440-3450.Google Scholar
  24. Gunther T, Vormann J, Konstanczak P, Schafer A. 1994 Interaction of polyamines in the measurement of free magnesium concentration by mag-fura-2 and 31P NMR. Biochim. Biophys. Acta 1192, 281-285.Google Scholar
  25. Günzel D, Galler S. 1991 Intracellular free Mg2+ concentration in skeletal muscle fibres of frog and cratfish. Pflugers Arch 417(5), 446-453.Google Scholar
  26. Gupta RK, Benovic JL, Rose ZB. 1978 The determination of the free magnesium level in the human red blood cell by 31P NMR. J Biol Chem 253(17), 6172-6176.Google Scholar
  27. Gupta RK, Moore RD. 1980 31P NMR studies of intracellular free Mg2+ in intact frog skeletal muscle. J Biol Chem 255(9), 3987-3993.Google Scholar
  28. Handy RD, Gow IF, Ellis D, Flatman PW. 1996 Na-dependent regulation of intracellular free magnesium concentration in isolated rat ventricular myocytes. J Mol Cell Cardiol 28, 1641-1651.Google Scholar
  29. Headrick JP, Willis RJ. 1989 Effect of stimulation on cytosolic Mg2+ in isolated rat heart: A 31P magnetic resonance study. Magnet Reso Med 12, 328-338.Google Scholar
  30. Hess P, Metzger P, Weingart R. 1982 Free magnesium in sheep, ferret, and frog striated muscle at rest measured with ion-selective microelectrodes. J Physiol (Lond) 333, 173-188.Google Scholar
  31. Hongo K, Konishi M, Kurihara S. 1994 Cytoplasmic free Mg2+ in rat ventricular myocytes studied with the fluorescent indicator furaptra. Jpn J Physiol 44, 357-378.Google Scholar
  32. Hu Z, Buhrer T, Muller M, Rusterholz B, Rouilly M, Simon W. 1989 Intracellular magnesium ion selective microelectrode based on a neutral carrier. Anal Chem 61, 574-576.Google Scholar
  33. Hurley TW, Ryan MP, Brinck RW. 1992 Changes in cytosolic Ca2+ interfere with measurements of cytosolic Mg2+ using mag-fura-2. Am J Physiol 263, C300-C307.Google Scholar
  34. Iyengar GV, Kollmer WE, Bowen HJM. 1978 The Elemental Composition of Human Tissues and Body Fluids. Weinheim; New York: Verlag Chemie.Google Scholar
  35. Jackson CE, Meier DW. 1968 Routine serum magnesium analysis. Correlation with clincial state in 5,100 patients. Arch Int Med 69, 743-748.Google Scholar
  36. Jelicks LA, Weaver J, Pollack S, Gupta RK. 1989 NMR studies of intracelllular free calcium, free magnesium, and sodium in the guinea pig reticulocyte and mature red cell. Biochim Biophys Acta 1012, 261-266.Google Scholar
  37. Keenan D, Romani A, Scarpa A. 1995 Differential regulation of circulating Mg2+ in the rat by β 1-and β 2-adrenergic receptor stimulation. Circ Res 77, 973-983.Google Scholar
  38. Konishi M, Hollingsworth S, Harkins AB, Baylor SM. 1991 Myoplasmic calcium transients in intact frog skeletal muscle fibers monitored with the fluorescent indicator furaptra. J Gen Physiol 97, 271-301.Google Scholar
  39. Kopp SJ, Barron JT, Tow JP. 1990 Phosphatic metabolites, intracellular pH and free [Mg2+] in single intact porcine carotid artery segments studied by 31P NMR. Biochim Biophys Acta 1055, 27-35.Google Scholar
  40. Koppel M, Spiro K. 1914 Ñber die Wirkung von Moderatoren (Puffern) bei der Verschiebung des Säure Basengleichwichtes in Biologischen Flüssigkeiten. Biochemische Zeitschrift 65, 409-439.Google Scholar
  41. Koss KL, Putnam RW, Grubbs RD. 1993 Mg2+ buffering in cultured chick ventricular myocytes: Quantitation and modulation by Ca2+. Amer J Physiol 264, C1259-C1269.Google Scholar
  42. Kruse HD, Orent ER, McCollum EV. 1932 Studies on magnesium deficiency in animals. J Biol Chem 96, 519-539.Google Scholar
  43. Kushmerick MJ, Dillon PF, Meyer RA, Brown TR, Krisanda JM, Sweeney HL. 1986 31P NMR spectroscopy, chemical analysis, and free Mg2+ of rabbit bladder and uterine smooth muscle. J Biol Chem 261, 14420-14429.Google Scholar
  44. Lanter F, Erne D, Ammann D, Simon W. 1980 Neutral carrier based ion-selective electrode for intracellular magnesium activity studies. Anal Chem 52, 2400-2402.Google Scholar
  45. Lattanzio FA, Bartschat DK. 1991 The effect of pH on the rate constants, ion selectivity, and thermodynamic properties of fluorescent calcium and magnesium indicators. Biochem Biophys Res Comm 177(1), 184-191.Google Scholar
  46. Leroy J. 1926 Necessité du magnesium pour la croissance de la souris. Compte Rendus des Seances de la Societe de Biologie 94, 431-433.Google Scholar
  47. Levy LA, Murphy E, Raju B, London RE. 1988 Measurement of cytosolic free magnesium ion concentration by 19F NMR. Biochemistry 27, 4041-4048.Google Scholar
  48. Lopez JR, Alamo L, Caputo C, Vergara J, DiPolo R. 1984 Direct measurement of intracellular free magnesium in frog skeletal muscle using magnesium-selective microelectrodes. Biochim Biophys Acta 804, 1-7.Google Scholar
  49. Luthi D, Günzel D, McGuigan JAS. 1999 Mg-ATP binding: Its modification by spermine, the relevance to cytosolic Mg2+ buffering, changes in the intracellular ionized Mg2+ concentration and the estimation of Mg2+ by 31P NMR. Exp Physiol 84, 231-252.Google Scholar
  50. Malloy CR, Cunningham CC, Radda GK. 1986 The metabolic state of the rat liver in vivo measured by 31P NMR spectroscopy. Biochim. Biophys. Acta 885, 1-11.Google Scholar
  51. Murphy, E. 1993 Measurement of intracellular ionized magnesium. Miner. Electrolyte Metab., 19, 250-258.Google Scholar
  52. Murphy E, Freudenrich CC, Levy LA, London RE. 1989a Monitoring cytosolic free magnesium in cultured chicken heart cells by use of the fluorescent indicator Furaptra. Proc Natl Acad Sci USA 86, 2981-2984.Google Scholar
  53. Murphy E, Steenbergen C, Levy LA, Raju B, London RE. 1989b Cytosolic free magnesium levels in ischemic rat heart. J Biol Chem 264, 5622-5627.Google Scholar
  54. Nakayama S, Nomura H. 1995 Mechanisms of intracellular Mg2+ regulation affected by amiloride and ouabain in the guinea-pig taenia caeci. J Physiol (Lond) 488, 1-12.Google Scholar
  55. Nanninga LB. 1961 Calculation of free magnesium, calcium and potassium in muscle. Biochim Biophys Acta 54, 338-344.Google Scholar
  56. Ng LL, Davies JE, Ameen M. 1992 Intracellular free-magnesium levels in vascular smooth muscle and striated muscle cells of the spontaneously hypertensive rat. Metabolism 41, 772-777.Google Scholar
  57. Ng LL, Davies JE, Garrido MC. 1991 Intracellular free magnesium in human lymphocytes and the response to lectins. Clin Sci 80, 539-547.Google Scholar
  58. Polimeni PI, Page E. 1973 Magnesium in heart muscle. Circ Res 33, 367-374.Google Scholar
  59. Quamme GA, Dai L-J, Rabkin SW. 1993 Dynamics of intracellular free Mg2+ changes in a vascular smooth muscle cell line. Amer J Physiol 265, H281-H288.Google Scholar
  60. Quamme GA, Rabkin SW. 1990 Cytosolic free magnesium in cardiac myocytes: Identification of a Mg2+ influx pathway. Biochem Biophys Res Comm 167(3), 1406-1412.Google Scholar
  61. Raftos JE, Lew VL, Flatman PW. 1999 Refinement and evaluation of a model of Mg2+ buffering in human red cells. Eur J Biochem 263, 635-645.Google Scholar
  62. Raju B, Murphy E, Levy LA, Hall RD, London RE. 1989 A fluorescent indicator for measuring cytosolic free magnesium. Am J Physiol 256, C540-C548.Google Scholar
  63. Reed PW, Lardy HA. 1972 A23187: A divalent cation ionophore. J Biol Chem 247, 6970-6977.Google Scholar
  64. Roos A, Boron WF. 1980 The buffer value of weak acids and bases: Origin of the concept, and the first mathematical derivation and application to physico-chemical systems. The work of M. Koppel and K. Spiro (1914). Resp Physiol 40, 1-32.Google Scholar
  65. Rose IA. 1968 The state of magnesium in cells as estimated from the adenylate kinase equilibrium. Proc Natl Acad Sci USA 61, 1079-1086.Google Scholar
  66. Rotevan S, Murphy E, Levy LA, Raju B, Lieberman M, London RE. 1989 Cytosolic free magnesium concentration in cultured chick heart cells. Amer J Physiol 257, C141-C146.Google Scholar
  67. Schachter D. 1959 The fluormetric estimation of magnesium in serum and in urine. J Lab Clin Med 54, 763-768.Google Scholar
  68. Schachter M, Gallagher KL, Sever PS. 1990 Measurement of intracellular magnesium in a vascular smooth muscle cell line using a fluorescent probe. Biochim Biophys Acta 1035, 378-380.Google Scholar
  69. Seiler RH, Ramirez O, Brest AN, Moyer JH. 1966 Serum and erythrocytic magnesium levels in congestive heart failure: Effect of hydrochlorothiazide. Am J Cardiol 17, 786-791.Google Scholar
  70. Somlyo AP, Somlyo AV, Shuman H. 1979 Electron probe analysis of vascular smooth muscle: Composition of mitochondria, nuclei, and cytoplasm. J Cell Biol 81, 316-335.Google Scholar
  71. Sugiyama T, Goldman WF. 1995 Measurement of SR free Ca2+ and Mg2+ in permeabilized smooth muscle cells with the use of furaptra. Am J Physiol 269, C698-C705.Google Scholar
  72. Tashiro M, Konishi M. 1997 Basal intracellular free Mg2+ concentration in smooth muscle cells of guinea pig tenia cecum: Intracellular calibration of the fluorescent indicator furaptra. Biophys J 73, 3358-3370.Google Scholar
  73. Thiers RE, Vallee BL. 1957 Distribution of metals in subcellular fractions of rat liver. J Biol Chem 226, 911-920.Google Scholar
  74. Thomas RC, Coles JA, Deitmer JW. 1991 Homeostatic muffling. Nature 350, 564.Google Scholar
  75. Tsien RY. 1980 New calcium indicators and buffers with high selectivity against magnesium and protons: Design, synthesis, and properties of prototype structures. Biochemistry 19, 2396-2404.Google Scholar
  76. Valberg LS, Holt JM, Paulson E, Szivek, J. 1965 Spectrochemical analysis of sodium, potassium, calcium, magnesium, copper and zinc in normal human erythrocytes. J Clin Investigation 44, 379-389.Google Scholar
  77. Veloso D, Guynn RW, Oskarsson M, Veech RL. 1973 The concentration of free and bound magnesium in rat tissues. J Biol Chem 248, 4811-4819.Google Scholar
  78. Vink R, Faden AI, McIntosh TK. 1988 Changes in cellular bioenergetic state following graded traumatic brain injury in rats: Determination by phosphorus-31 magnetic resonance spectroscopy. J Neurotrauma 5, 315-330.Google Scholar
  79. Wacker WEC, Vallee BL. 1957 Study of magnesium metabolism in acute renal failure employing multichannel flame spectrometer. N Eng J Med 257, 1254-1262.Google Scholar
  80. Walser M. 1967 Magnesium Metabolism. Ergebn Physiol Biol Chem Exp Pharmacol 59, 185-341.Google Scholar
  81. Westerblad H, Allen DG. 1992 Myoplasmic free Mg2+ concentration during repetitive stimulation of single fibres from mouse skeletal muscle. J Physiol (Lond) 453, 413-434.Google Scholar
  82. Zhang GH, Melvin J E. 1992 Secretagogue-induced mobilization of an intracellular Mg2+ pool in rat sublingual mucous acini. J Biol Chem 267, 20721-20727.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Robert D. Grubbs
    • 1
  1. 1.Department of Pharmacology and Toxicology, School of MedicineWright State UniversityDaytonUSA

Personalised recommendations