Genetica

, Volume 115, Issue 1, pp 65–80 | Cite as

Expansion of genome coding regions by acquisition of new genes

  • Esther Betrán
  • Manyuan Long
Article

Abstract

As it is the case for non-coding regions, the coding regions of organisms can be expanded or shrunk during evolutionary processes. However, the dynamics of coding regions are expected to be more correlated with functional complexity and diversity than are the dynamics of non-coding regions. Hence, it is interesting to investigate the increase of diversity in coding regions – the origin and evolution of new genes – because this provides a new component to the genetic variation underlying the diversity of living organisms. Here, we examine what is known about the mechanisms responsible for the increase in gene number. Every mechanism affects genomes in a distinct way and to a different extent and it appears that certain organisms favor particular mechanisms. The detail of some interesting gene acquisitions reveals the extreme dynamism of genomes. Finally, we discuss what is known about the fate of new genes and conclude that many of the acquisitions are likely to have been driven by natural selection; they increase functional complexity, diversity, and/or adaptation of species. Despite this, the correlation between complexity of life and gene number is low and closely related species (with very similar life histories) can have very different number of genes. We call this phenomenon the G-value paradox.

new genes G-value paradox natural selection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M.D. et al., 2000. The genome sequence of Drosophila melanogaster. Science 287: 2185-2195.Google Scholar
  2. Albalat, R., G. Marfany & R. González-Duarte, 1994. Analysis of nucleotide substitutions and amino acid conservation in the Drosophila Adh genomic region. Genetica 94: 27-36.Google Scholar
  3. Aravind, L., H. Watanabe, D.J. Lipman & E.V. Koonin, 2000. Lineage-specific loss and divergence of functionally linked genes in eukaryotes. Proc. Nat. Acad. Sci. USA 97: 11319-11324.Google Scholar
  4. Ashburner, M., 1998. Speculations on the subject of alcohol dehydrogenase and its properties in Drosophila and other flies. BioEssays 20: 949-954.Google Scholar
  5. Ashworth, A., B. Skene, S. Swift & Lovell-Badge, R., 1990. Zfa is an expressed retroposon derived from an alternative transcript of the Zfx gene. EMBO J. 9(5): 1529-1534.Google Scholar
  6. Ball, C.A. & J.M. Cherry. 2001. Genome comparisons highlight similarity and diversity within the eukaryotic kingdoms. Curr. Opin. Chem. Biol. 5: 86-89.Google Scholar
  7. Bancroft, I., 2001. Duplicate and diverge: the evolution of plant genome microstructure. Trends Genet. 17: 89-93.Google Scholar
  8. Begun, D.J., 1997. Origin and evolution of a new gene descended from alcohol dehydrogenase in Drosophila. Genetics 145: 375-382.Google Scholar
  9. Benevolenskaya, E.V., G.L. Kogan, A.V. Tulin, D. Philipp & V.A. Gvozdev, 1997. Segmented gene conversion as a mechanism of correction of 18S rRNA pseudogene located outside of rDNA cluster in D. melanogaster. J. Mol. Evol. 44: 646-651.Google Scholar
  10. Betrán, E.& M. Ashburner, 2000. Duplication, dicistronic transcription, and subsequent evolution of the Alcohol dehydrogenase and Alcohol dehydrogenase-related genes in Drosophila. Mol. Biol. Evol. 17: 1344-1352.Google Scholar
  11. Blanc, G., A. Barakat, R. Guyot, R. Cooke & M. Delseny, 2000. Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12: 1093-1101.Google Scholar
  12. Bridges, C.B., 1936. The bar ‘gene’ a duplication. Science 83: 210-211.Google Scholar
  13. Brogna, S. & M. Ashburner, 1997. The Adh-related gene of Drosophila melanogaster is expressed as a functional dicistronic messenger RNA: multigenic transcription in higher organisms. EMBO J. 16: 2023-2031.Google Scholar
  14. Brosius, J., 1991. Retroposons-seeds of evolution. Science 251: 753.Google Scholar
  15. Brosius, J., 1999. RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene 238: 115-113.Google Scholar
  16. Brosius, J. & S.J. Gould, 1992. On ‘genomenclature': a comprehensive (and respectful) taxonomy for pseudogenes and other ’junk DNA'. Proc. Natl. Acad. Sci. USA 89: 10706-10710.Google Scholar
  17. Chambers, G.K., 1988. The Drosophila alcohol dehydrogenase gene-enzyme system. Adv. Genet. 25: 40-107.Google Scholar
  18. Charlesworth, B. & D. Charlesworth, 1999. How was the Sdic gene fixed? Nature 400(6744): 519-520.Google Scholar
  19. Chen, L., A.L. DeVries & C.H. Cheng, 1997a. Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc. Natl. Acad. Sci. USA 94: 3811-3816.Google Scholar
  20. Chen, L., A.L. DeVries & C.H. Cheng, 1997b. Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proc. Natl. Acad. Sci. USA 94: 3817-3822.Google Scholar
  21. Chiang, P.W., R. Zhang, L. Stubbs, L. Zhang, L. Zhu & D.M. Kurnit, 1998. Comparison of murine Supt4h and a nearly identical expressed, processed gene: evidence of sequence conservation through gene conversion extending into the untranslated regions. Nucl. Acids Res. 26(21): 4960-4964.Google Scholar
  22. Chiu, C.H., H. Schneider, J.L. Slightom, D.L. Gumucio & M. Goodman, 1997. Dynamics of regulatory evolution in primate beta-globin gene clusters: cis-mediated acquisition of simian gamma fetal expression patterns. Gene 205: 47-57.Google Scholar
  23. Dahl, H.H., R.M. Brown, W.M. Hutchison, C. Maragos & G.K. Brown, 1990. A testis-specific form of the human pyruvate dehydrogenase E1 alpha subunit is coded for by an intronless gene on chromosome 4. Genomics 8: 225-232.Google Scholar
  24. Datta, U., I.D. Wexler, D.S. Kerr, I. Raz & M.S. Patel, 1999. Characterization of the regulatory region of the human testis-specific form of the pyruvate dehydrogenase alpha-subunit (PDHA-2) gene. Biochim. Biophys. Acta 1447: 236-243.Google Scholar
  25. de Koning, A.P., F.S.L. Brinkman, S.J.M. Jonees & P.J. Keeling, 2000. Lateral gene transfer and metabolic adaptation in the human parasite Trichomonas vaginalis. 17(11): 1769-1773.Google Scholar
  26. de Souza, S.J., M. Long, L. Schoenbach, S.W. Roy & W. Gilbert, 1996. Intron positions correlate with module boundaries in ancient proteins. Proc. Natl. Acad. Sci. USA 93: 14632-14636.Google Scholar
  27. Dermitzakis, E.T. & A.G. Clark, 2001. Differential selection after duplication in mammalian developmental genes. Mol. Biol. Evol. 18: 557-562.Google Scholar
  28. Duda, T.F., Jr. & S.R. Palumbi, 1999. Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus. Proc. Natl. Acad. Sci. USA 96: 6820-6823.Google Scholar
  29. Dunham, I. et al., 1999. The DNA sequence of human chromosome 22 [see comments] [published erratum appears in Nature 2000 Apr 20; 404(6780): 904]. Nature 402: 489-495.Google Scholar
  30. Elliott, D.J., J.P. Venables, C.S. Newton, D. Lawson, S. Boyle, I.C. Eperon, & H.J. Cooke, 2000. An evolutionarily conserved germ cell-specific hnRNP is encoded by a retrotransposed gene. Hum. Mol. Genet. 9: 2117-2124.Google Scholar
  31. Esnault, C., J. Maestre & T. Heidmann, 2000. Human LINE retrotransposons generate processed pseudogenes. Nat. Genet. 24: 363-367.Google Scholar
  32. Fedorov, A., L. Fedorova, V. Starshenko, V. Filatov & E. Grigor'ev, 1998. Influence of exon duplication on intron and exon phase distribution. J. Mol. Evol. 46: 263-271.Google Scholar
  33. Fitzgerald, J., H.H. Dahl, I.B. Jakobsen & S. Easteal, 1996. Evolution of mammalian X-linked and autosomal Pgk and Pdh E1 alpha subunit genes. Mol. Biol. Evol. 13: 1023-1031.Google Scholar
  34. Force, A., M. Lynch, F.B. Pickett, A. Amores, Y.L. Yan & J. Postlethwait, 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151: 1531-1545.Google Scholar
  35. Friedman, R. & A.L. Hughes, 2001. Gene duplication and the structure of eukaryotic genomes. Genome Res. 11: 373-381.Google Scholar
  36. Gao, M., W. Rychlik & R.E. Rhoads, 1998. Cloning and characterization of human eIF4E genes. J. Biol. Chem. 273: 4622-4628.Google Scholar
  37. Gilbert, W., 1978. Why genes in pieces? Nature 271: 44.Google Scholar
  38. Gilbert, W., S.J. de Souza & M. Long, 1997. Origin of genes. Proc. Natl. Acad. Sci. USA 94: 7698-7703.Google Scholar
  39. Goffeau, A., B.G. Barrell, H. Bussey, R.W. Davis, B. Dujon, H. Feldmann, F. Galibert, J.D. Hoheisel, C. Jacq, M. Johnston, E.J. Louis, H.W. Mewes, Y. Murakami, P. Philippsen, H. Tettelin, & S.G. Oliver, 1996. Life with 6000 genes. Science 274: 546, 563-567.Google Scholar
  40. Golding, G.B. & A.M. Dean, 1998. The structural basis of molecular adaptation. Mol. Biol. Evol. 15: 355-369.Google Scholar
  41. Graur, D. & W.-H. Li, 2000. Fundamentals of Molecular Evolution. Sinauer Associates, Sunderland, MA.Google Scholar
  42. Gu, X. & M. Nei, 1999. Locus specificity of polymorphic alleles and evolution by a birth-and-death process in mammalian MHC genes. Mol. Biol. Evol. 16: 147-156.Google Scholar
  43. Haldane J.B.S., 1932. The Causes of Evolution. Longmans & Green, London.Google Scholar
  44. Hansen, T.F., A.J. Carter & C.H. Chiu, 2000. Gene conversion may aid adaptive peak shifts. J. Theor. Biol. 207: 495-511.Google Scholar
  45. Harrison, P.M., N. Echols & M.B. Gerstein, 2001. Digging for dead genes: an analysis of the characteristics of the pseudogene population in the Caenorhabditis elegans genome. Nucl. Acids. Res. 29: 818-830.Google Scholar
  46. Hart, P.E., J.N. Glantz, J.D. Orth, G.M. Poynter & J.L. Salisbury, 1999. Testis-specific murine centrin, Cetn1: genomic characterization and evidence for retroposition of a gene encoding a centrosome protein. Genomics 60: 111-120.Google Scholar
  47. Hendriksen P.J., J.W. Hoogerbrugge, W.M. Baarends, P. de Boer, J.T. Vreeburg, E.A. Vos, T. van der Lende & J.A. Grootegoed, 1997. Testis-specific expression of a functional retroposon encoding glucose-6-phosphate dehydrogenase in the mouse. Genomics 41(3): 350-359.Google Scholar
  48. Hooft van Huijsduijnen, R., 1998. ADAM 20 and 21; two novel human testis-specific membrane metalloproteases with similarity to fertilin-alpha. Gene 206: 273-282.Google Scholar
  49. Hughes, A.L., 1994. The evolution of functionally novel proteins after gene duplication. Proc. R Soc. Lond. B Biol. Sci. 256: 119-124.Google Scholar
  50. Jeffs, P. & Ashburner, M., 1991. Processed pseudogenes in Drosophila. Proc. R. Soc. Lond. B 244: 151-159.Google Scholar
  51. Jeffs, P.S., E.C. Holmes & M. Ashburner, 1994. The molecular evolution of the Alcohol dehydrogenase and Alcohol dehydrogenaserelated genes in the Drosophila melanogaster species subgroup. Mol. Biol. Evol. 11: 287-304.Google Scholar
  52. Kimura, M. & J.L. King. 1979. Fixation of a deleterious allele at one of two duplicate; loci by mutation pressure and random drift. Proc. Natl. Acad. Sci. USA 76: 2858-2861.Google Scholar
  53. Kleene K.C., E. Mulligan, D. Steiger, K. Donohue & M.A. Mastrangelo, 1998. The mouse gene encoding the testis-specific isoform of Poly(A) binding protein (Pabp2) is an expressed retroposon: intimations that gene expression in spermatogenic cells facilitates the creation of new genes. J. Mol. Evol. 47(3): 275-281.Google Scholar
  54. Kleene K.C. & M.A. Mastrangelo, 1999. The promoter of the Poly(A) binding protein 2 (Pabp2) retroposon is derived from the 5'-untranslated region of the Pabp1 progenitor gene. Genom. Genom. 61(2): 194-200.Google Scholar
  55. Knight, C.A., C.C. Cheng & A.L. DeVries, 1991. Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes. Biophys. J. 59: 409-418.Google Scholar
  56. Lahn, B.T. & D.C. Page, 1999. Retroposition of autosomal mRNA yielded testis-specific gene family on human Y chromosome. Nat. Genet. 21: 429-433.Google Scholar
  57. Lander, E.S. et al., 2001. Initial sequencing and analysis of the human genome. Nature 409: 860-921.Google Scholar
  58. Langley, C.H., E. Montgomery & W.F. Quattlebaum, 1982. Restriction map variation in the Adh region of Drosophila. Proc. Natl. Acad. Sci. USA 79: 5631-5635.Google Scholar
  59. Li, W.H., 1997. Molecular Evolution. Sinauer Associates, Sunderland, MA.Google Scholar
  60. Li, W.H., Z. Gu, H. Wang & A. Nekrutenko, 2001. Evolutionary analyses of the human genome. Nature 409: 847-849.Google Scholar
  61. Linnenbach, A.J., B.A. Seng, S. Wu, S. Robbins, M. Scollon, J.J. Pyrc, T. Druck & K. Huebner. 1993. Retroposition in a family of carcinoma-associated antigen genes. Mol. Cell. Biol. 13: 1507-1515.Google Scholar
  62. Logsdon, J.M., & W.F. Doolittle, 1997. Origin of antifreeze protein genes: a cool tale in molecular evolution. Proc. Natl. Acad. Sci. USA 94: 3485-3487.Google Scholar
  63. Long, M., S.J. de Souza, C. Rosenberg & W. Gilbert, 1996. Exon shuffling and the origin of the mitochondrial targeting function in plant cytochrome c1 precursor. Proc. Natl. Acad. Sci. USA 93: 7727-7731.Google Scholar
  64. Long, M., S.J. de Souza, C. Rosenberg & W. Gilbert, 1998. Relationship between ‘proto-splice sites’ and intron phases: evidence from dicodon analysis. Proc. Natl. Acad. Sci. USA 95: 219-223.Google Scholar
  65. Long, M. & M. Deutsch, 1999. Association of intron phases with conservation at splice site sequences and evolution of spliceosomal introns. Mol. Biol. Evol. 16: 1528-1534.Google Scholar
  66. Long, M. & C.H. Langley, 1993. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260: 91-95.Google Scholar
  67. Long, M. & Thorton, K. 2001 Evolution of gene duplication. Science 293: 1551a.Google Scholar
  68. Long, M., W. Wang & J. Zhang, 1999. Origin of new genes and source for N-terminal domain of the chimerical gene, jingwei, in Drosophila. Gene 238: 135-141.Google Scholar
  69. Louh S.W. & D.C. Page, 1994. The structure of the Zfx gene on the mouse X chromosome. Genomics 19(2): 310-319.Google Scholar
  70. Lynch, M. & J.S. Conery, 2000. The evolutionary fate and consequences of duplicate genes. Science 290: 1151-1155.Google Scholar
  71. Lynch, M. & A. Force, 2000. The probability of duplicate gene preservation by subfunctionalization. Genetics 154: 459-473.Google Scholar
  72. Maestre, J., T. Tchenio, O. Dhellin & T. Heidmann, 1995. mRNA retroposition in human cells: processed pseudogene formation. EMBO J. 14: 6333-6338.Google Scholar
  73. Makeyev, A.V., A.N. Chkheidze & S.A. Liebhaber, 1999. A set of highly conserved RNA-binding proteins, alphaCP-1 and alphaCP-2, implicated in mRNA stabilization, are coexpressed from an intronless gene and its intron-containing paralog. J. Biol. Chem. 274: 24849-24857.Google Scholar
  74. Martignetti, J.A. & Brosius, J., 1993. BC200 RNA: a neural RNA polymerase III product encoded by a monomeric Alu element. Proc. Natl. Acad. Sci. USA 90: 11563-11567.Google Scholar
  75. McCarrey, J.R., 1987. Nucleotide sequence of the promoter region of a tissue-specific human retroposon: comparison with its housekeeping progenitor. Gene 61: 291-298.Google Scholar
  76. McCarrey, J.R., 1990. Molecular evolution of the human Pgk-2 retroposon. Nucl. Acids Res. 18: 949-955.Google Scholar
  77. McCarrey, J.R., M. Kumari, M.J. Aivaliotis, Z. Wang, P. Zhang, F. Marshall & J.L. Vandeberg, 1996. Analysis of the cDNA and encoded protein of the human testis-specific Pgk-2 gene. Dev. Genet. 19: 321-332.Google Scholar
  78. McDonald, J.H. & M. Kreitman, 1991. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351: 652-654.Google Scholar
  79. Meyer, A. & M. Schartl, 1999. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr. Opin. Cell Biol. 11: 699-704.Google Scholar
  80. Mighell, A.J., N.R. Smith, P.A. Robinson & A.F. Markham, 2000. Vertebrate pseudogenes. FEBS Lett. 468: 109-114.Google Scholar
  81. Morgenstern, B. & W.R. Atchley, 1999. Evolution of bHLH transcription factors: modular evolution by domain shuffling? Mol. Biol. Evol. 16: 1654-1663.Google Scholar
  82. Morton, C.C., M.C. Nussenzweig, R. Sousa, G.D. Sorenson, O.S. Pettengill & T.B. Shows, 1989. Mapping and characterization of an X-linked processed gene related to MYCL1. Genomics 4: 367-375.Google Scholar
  83. Muller H., 1935 The origination of chromatin deficiencies as minute deletions subject to insertion elsewhere. Genetics 17: 237-252.Google Scholar
  84. Nabetani A., I. Hatada, H. Morisaki, M. Oshimura & T. Mukai, 1997. Mouse U2af1-rs1 is a neomorphic imprinted gene. Mol. Cell. Biol. 17(2): 789-778.Google Scholar
  85. Nhim R.P., J.S. Lindsey & M.F. Wilkinson, 1997. A processed homeobox gene expressed in a stage-, tissue-and region-specific manner in epididymis. Gene 185(2): 271-276.Google Scholar
  86. Noyce, L., J. Conaty, & A.A. Piper, 1997. Identification of a novel tissue-specific processed HPRT gene and comparison with X-linked gene transcription in the Australian marsupial Macropus robustus. Gene 186: 87-95.Google Scholar
  87. Nurminsky, D.I., M.V. Nurminskaya, D. De Aguiar & D.L. Hartl, 1998. Selective sweep of a newly evolved sperm-specific gene in Drosophila. Nature 396: 572-575.Google Scholar
  88. Nurminsky, D.Y., E.N. Moriyama, E.R. Lozovskaya & D.L. Hartl, 1996. Molecular phylogeny and genome evolution in Drosophila virilis species group: duplication of the Alcohol dehydrogenase gene. Mol. Biol. Evol. 13: 132-149.Google Scholar
  89. Ochman, H., J.G. Lawrence & E.A. Groisman, 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299-304.Google Scholar
  90. Ohno, S., 1970. Evolution by Gene Duplication. Springer, Berlin.Google Scholar
  91. Ohno, S., 1999. The one-to-four rule and paralogues of sex-determining genes. Cell. Mol. Life. Sci. 55: 824-830.Google Scholar
  92. Ohta, T., 1994. Further examples of evolution by gene duplication revealed through DNA sequence comparisons. Genetics 138: 1331-1337.Google Scholar
  93. Ohta, T., 2000. Evolution of gene families. Gene 259: 45-52.Google Scholar
  94. Otto, S.P. & J. Whitton, 2000. Polyploid incidence and evolution. Annu. Rev. Genet. 34: 401-437.Google Scholar
  95. Pan, Y., W.K. Decker, A.H. Huq & W.J. Craigen, 1999. Retrotransposition of glycerol kinase-related genes from the X chromosome to autosomes: functional and evolutionary aspects. Genomics 59: 282-290.Google Scholar
  96. Persson K., I. Holm & O. Heby, 1995. Cloning and sequencing of an intronless mouse S-adenosylmethionine decarboxylase gene coding for a functional enzyme strongly expressed in the liver. J. Biol. Chem. 270(10): 5642-5648.Google Scholar
  97. Petrov, D.A., E.R. Lozovskaya & D.L. Hartl, 1996. High intrinsic rate of DNA loss in Drosophila. Nature 384: 346-349.Google Scholar
  98. Poindexter, K., N. Nelson, R.F. DuBose, R.A. Black & D.P. Cerretti, 1999. The identification of seven metalloproteinase-disintegrin (ADAM) genes from genomic libraries. Gene 237: 61-70.Google Scholar
  99. Popadic, A., R.A. Norman, W.W. Doanet & W.W. Anderson, 1996. The evolutionary history of the amylase multigene family in Drosophila pseudoobscura. Mol. Biol. Evol. 13: 883-888.Google Scholar
  100. Powell, J.R., 1997. Progress and Prospects in Evolutionary Biology: The Drosophila Model. Oxford University Press, New York.Google Scholar
  101. Rat, L., M. Veuille & s J.A. Lepesant, 1991. Drosophila Fat body protein P6 and Alcohol dehydrogenase are derived from a common ancestral protein. J. Mol. Evol. 33: 194-203.Google Scholar
  102. Reinton, N., T.B. Haugen, S. Orstavik, B.S. Skalhegg, V. Hansson, T. Jahnsen & K. Tasken, 1998. The gene encoding the C gamma catalytic subunit of cAMP-dependent protein kinase is a transcribed retroposon. Genomics 49: 290-297.Google Scholar
  103. Rhyner, J.A., M. Koller, I. Durussel-Gerber, J.A. Cox & E.E. Strehler, 1992. Characterization of the human calmodulinlike protein expressed in Escherichia coli. Biochemistry 31: 12826-12832.Google Scholar
  104. Robertson, N.G., R.J. Pomponio, G.L. Mutter & C.C. Morton, 1991. Testis-specific expression of the human MYCL2 gene. Nucl. Acids Res. 19: 3129-3137.Google Scholar
  105. Rogalla, P., Kazmierczak, B., Flohr A.M., Hauke, S. & Bullerdiek, J, 2000. Back to the roots of a new exon: the molecular archaeology of a SP100 splice variant. Genomics 63: 117-122.Google Scholar
  106. Rubin, G.M. et al., 2000. Comparative genomics of the eukaryotes. Science 287: 2204-2215.Google Scholar
  107. Russo, C.A.M., N. Takezaki & M. Nei, 1995. Molecular phylogeny and divergence times of Drosophilid species. Mol. Biol. Evol. 13: 391-404.Google Scholar
  108. Salzberg, S.L., O. White, J. Peterson & J.A. Eisen, 2001. Microbial genes in the human genome: lateral transfer or gene loss? Science 17: 17.Google Scholar
  109. Sargent, C.A., C. Young, S. Marsh, M.A. Ferguson-Smith & N.A. Affara, 1994. The glycerol kinase gene family: structure of the Xp gene, and related intronless retroposons. Hum. Mol. Genet. 3: 1317-1324.Google Scholar
  110. Saxena, R., L.G. Brown, T. Hawkins, R.K. Alagappan, H. Skaletsky, M.P. Reeve, R. Reijo, S. Rozen, M.B. Dinulos, C.M. Disteche, & D.C. Page, 1996. The DAZ gene cluster on the human Y chromosome arose from an autosomal gene that was transposed, repeatedly amplified and pruned. Nat. Genet. 14: 292-299.Google Scholar
  111. Schaefer, S.W. & C.F. Aquadro, 1987. Nucleotide sequence of the Adh gene region of Drosophila pseudoobscura: evolutionary change and evidence for an ancient gene duplication. Genetics 117: 61-73.Google Scholar
  112. Sedlacek, Z., E. Munstermann, S. Dhorne-Pollet, C. Otto, D. Bock, G. Schutz & A. Poustka. 1999. Human and mouse XAP-5 and XAP-5-like (X5L) genes: identification of an ancient functional retroposon differentially expressed in testis. Genomics 61: 125-132.Google Scholar
  113. Sharon, D., G. Glusman, Y. Pilpel, M. Khen, F. Gruetzner, T. Haaf & D. Lancet, 1999. Primate evolution of an olfactory receptor cluster: diversification by gene conversion and recent emergence of pseudogenes. Genomics 61: 24-36.Google Scholar
  114. Shashidharan, P., T.M. Michaelidis, N.K. Robakis, A. Kresovali, J. Papamatheakis & A. Plaitakis, 1994. Novel human glutamate dehydrogenase expressed in neural and testicular tissues and encoded by an X-linked intronless gene. J. Biol. Chem. 269: 16971-16976.Google Scholar
  115. Soares M.B., E. Schon, A. Henderson, S.K. Karathanasis, R. Cate, S. Zeitlin, J. Chirgwin & A. Efstratiadis, 1985. RNA-mediated gene duplication: the rat preproinsulin I gene is a functional retroposon. Mol. Cell. Biol. 5(8): 2090-2103.Google Scholar
  116. Soret, J., R. Gattoni, C. Guyon, A. Sureau, M. Popielarz, E. Le Rouzic, S. Dumon, F. Apiou, B. Dutrillaux, H. Voss, W. Ansorge, J. Stevenin & B. Perbal, 1998. Characterization of SRp46, a novel human SR splicing factor encoded by a PR264/SC35 retropseudogene. Mol. Cell. Biol. 18: 4924-4934.Google Scholar
  117. Spofford, J., 1969. Heterosis and evolution of duplications. Amer. Natural. 103: 407-432.Google Scholar
  118. Spring, J., 1997. Vertebrate evolution by interspecific hybridisation-are we polyploid? FEBS Lett 400: 2-8.Google Scholar
  119. Steinemann, M. & S. Steinemann, 1998. Enigma of Y chromosome degeneration: neo-Y and neo-X chromosomes of Drosophila miranda a model for sex chromosome evolution. Genetica 103: 409-420.Google Scholar
  120. Takeda, J., S. Seino & G.I. Bell, 1992. Human Oct3 gene family: cDNA sequences, alternative splicing, gene organization, chromosomal location, and expression at low levels in adult tissues. Nucl. Acids Res. 20: 4613-4620.Google Scholar
  121. The Arabidopsis Genome Initiative, 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815.Google Scholar
  122. The C. elegans Sequencing Consortium, 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282: 2012-2018.Google Scholar
  123. Thomson, T.M., J.J. Lozano, N. Loukili, R. Carrio, F. Serras, B. Cormand, M. Valeri, V.M. Diaz, J. Abril, M. Burset, J. Merino, A. Macaya, M. Corominas & R. Guigo, 2000. Fusion of the human gene for the polyubiquitination coeffector UEV1 with Kua, a newly identified gene. Genome Res. 10: 1743-1756.Google Scholar
  124. Ting, C.T., S.C. Tsaur, M.L. Wu & C.I. Wu, 1998. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science 282: 1501-1504.Google Scholar
  125. Todd, A.E., C. A.S. Orengo & J.M. Thornton, 2001. Evolution of function in protein superfamilies, from a structural perspective. J. Mol. Biol. 307: 1113-1143.Google Scholar
  126. Trabesinger-Ruef, N., T. Jermann, T. Zankel, B. Durrant, G. Frank & S.A. Benner, 1996. Pseudogenes in ribonuclease evolution: a source of new biomacromolecular function? FEBS Lett. 382: 319-322.Google Scholar
  127. Tsytsykova A.V., E.N. Tsitsikov, D.A. Wright, B. Futcher & R.S. Geha, 1998. The mouse genome contains two expressed intronless retroposed pseudogenes for the sentrin/sumo-1/PIC1 conjugating enzyme Ubc9. Mol. Immunol. 35(16): 1057-1067.Google Scholar
  128. Venter, J.C. et al., 2001. The sequence of the human genome. Science 291: 1304-1351.Google Scholar
  129. Wagner, M., 1986. A consideration of the origin of processed pseudogenes (review). TIG: 134-137.Google Scholar
  130. Walsh, J.B., 1995. How often do duplicated genes evolve new functions? Genetics 139: 421-428.Google Scholar
  131. Wang, W., J. Zhang, C. Alvarez, A. Llopart & M. Long, 2000. The origin of the Jingwei gene and the complex modular structure of its parental gene, yellow emperor, in Drosophila melanogaster. Mol. Biol. Evol. 17: 1294-1301.Google Scholar
  132. Watterson, G.A., 1983. On the time for gene silencing at duplicate loci. Genetics 105: 745-766.Google Scholar
  133. Wolfe, K.H. & D.C. Shields, 1997. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387: 708-713.Google Scholar
  134. Yi, S. & B. Charlesworth, 2000. A selective sweep associated with a recent gene transposition in Drosophila miranda. Genetics 156: 1753-1763.Google Scholar
  135. Zaiss, D.M. & P.M. Kloetzel, 1999. A second gene encoding the mouse proteasome activator PA28beta subunit is part of a LINE1 element and is driven by a LINE1 promoter. J. Mol. Biol. 287 (5): 829-835.Google Scholar
  136. Zeng L., J.M. Comeron, B. Chen & M. Kreitman, 1998. The molecular clock revisited: the rate of synonymous vs replacement change in Drosophila. Genetica 102/103: 369-382.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Esther Betrán
    • 1
  • Manyuan Long
    • 1
  1. 1.Department of Ecology and Evolution, 304 Zoology BuildingThe University of ChicagoChicagoUSA

Personalised recommendations