Advertisement

Relative Amino Acid Concentrations as a Signature for Parent Body Processes of Carbonaceous Chondrites

  • Oliver Botta
  • Daniel P. Glavin
  • Gerhard Kminek
  • Jeffrey L. BadaEmail author
Article

Abstract

Most meteorites are thought to have originated from objects in the asteroid belt. Carbonaceous chondrites, which contain significant amounts of organic carbon including complex organiccompounds, have also been suggested to be derived from comets. The current model for the synthesis of organic compounds found in carbonaceous chondrites includes the survival of interstellarorganic compounds and the processing of some of these compounds on the meteoritic parent body. The amino acid composition of fiveCM carbonaceous chondrites, two CIs, one CR, and one CV3 havebeen measured using hot water extraction-vapor hydrolysis,OPA/NAC derivatization and high-performance liquid chromatography(HPLC). Total amino acid abundances in the bulk meteorites as well as the amino acid concentrations relative to glycine = 1.0for β-alanine, α-aminoisobutyric acid and D-alaninewere determined. Additional data for three Antarctic CM meteorites were obtained from the literature. All CM meteoritesanalyzed in this study show a complex distribution of amino acidsand a high variability in total concentration ranging from ∼15 300 to ∼5800 parts per billion (ppb), while the CIs show a total amino acid abundance of ∼4300 ppb. The relatively(compared to glycine) high AIB content found in all the CMs is astrong indicator that Strecker-cyanohydrin synthesis is thedominant pathway for the formation of amino acids found inthese meteorites. The data from the Antarctic CM carbonaceous chondrites are inconsistent with the results from the other CMs,perhaps due to influences from the Antarctic ice that were effective during their residence time. In contrast to CMs, the data from the CI carbonaceous chondrites indicate that the Strecker synthesis was not active on their parent bodies.

amino acids meteorites organic compounds parent body solar system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anders, E.: 1989, Pre-biotic Organic Matter from Comets and Asteroids, Nature 342, 255–257.Google Scholar
  2. Botta, O. and Bada, J. L.: 2002, Extraterrestrial Organic Compounds in Meteorites, Surv. Geophys. (in press).Google Scholar
  3. Burbine, T. H.: 1998, Could G-class Asteroids be the Parent Bodies of the CM Chondrites?, Meteorit. Planet. Sci. 33, 253–258.Google Scholar
  4. Campins, H. and Swindle, T. D.: 1998, Expected Characteristics of Cometary Meteorites, Meteorit. Planet. Sci. 33, 1201–1211.Google Scholar
  5. Chyba, C. F. and Sagan, C.: 1992, Endogenous Production, Exogenous Delivery, and Impact-shock Synthesis of Organic Molecules: An Inventory for the Origins of Life, Nature 355, 125–132.Google Scholar
  6. Clayton, R. N. and Mayeda, T. K.: 1984, The Oxygen Isotope Record in Murchison and Other Carbonaceous Chondrites, Earth Planet. Sci. Lett. 67, 151–161.Google Scholar
  7. Cronin, J. R. and Moore, C. B.: 1971, Amino Acid Analyses of the Murchison, Murray and Allende Carbonaceous Chondrites, Science 172, 1327–1329.Google Scholar
  8. Cronin, J. R., Pizzarello, S. and Moore, C. B.: 1979, Amino Acids in an Antarctic Carbonaceous Chondrite, Science 206, 335–337.Google Scholar
  9. Cronin, J. R. and Chang, S.: 1993, Organic Matter in Meteorites: Molecular and Isotopic Analyses of the Murchison Meteorites, in J. M. Greenberg, C. X. Mendoza-Gomez and V. Pirronello (eds), The Chemistry of Life's Origin, Kluwer Academic Publishers, The Netherlands, pp. 209–258.Google Scholar
  10. Cronin, J. R. and Pizzarello, S: 1997, Enantiomeric Excesses in Meteoritic Amino Acids, Science 275, 951–955.Google Scholar
  11. DuFresne, E. R. and Anders, E.: 1962, On the Chemical Evolution of the Carbonaceous Chondrites, Geochim. Cosmochim. Acta 26, 1085–1114.Google Scholar
  12. Ehrenfreund, P. and Charnley, S. B.: 2000, Organic Molecules in the Interstellar Medium, Comets and Meteorites: A Voyage from Dark Clouds to the Early Earth, Ann. Rev. Astron. Astrophys. 38, 427–483.Google Scholar
  13. Ehrenfreund, P., Glavin, D., Botta, O., Cooper, G.W. G. and Bada, J. B.: 2001, Extraterrestrial Amino Acid in Orgueil and Ivuna: Tracing the Parent Body of CI Type Carbonaceous Chondrites, Proc. Natl. Acad. Sci. U.S.A. 98, 2138–2141.Google Scholar
  14. Endress, M. and Bischoff, A.: 1996, Carbonates in CI Chondrites: Clues to Parent Body Evolution, Geochim. Cosmochim. Acta 60, 489–507.Google Scholar
  15. Engel, M. H. and Macko, S. A.: 1997, Isotopic Evidence for Extraterrestrial Non-racemic Amino Acids in the Murchison Meteorite, Nature 389, 265–268.Google Scholar
  16. Glavin, D. P., Bada, J. L., Brinton, K. L. F. and McDonald, G. D.: 1999, Amino Acids in the Martian Meteorite Nakhla, Proc. Natl. Acad. Sci. U.S.A. 96, 8835–8838.Google Scholar
  17. Hartmann, W. K., Tholen, D. J. and Cruikshank, D. P.: 1987, The Relationship of Active Comets, Extinct” Comets, and Dark Asteroids, Icarus 69, 33–50.Google Scholar
  18. Herbert, F. and Sonett, C. P.: 1978, Primordial Heating of Asteroids via Electrical Induction in a T Tauri-like Solar Wind, Astrophys. Space Sci. 55, 227–239.Google Scholar
  19. Hiroi, T., Pieters, C. M., Zolensky, M. E. and Lipshutz, M. E.: 1993, Evidence for Thermal Metamorphism on the C, G, B, and F Asteroids, Science 261, 1016–1018.Google Scholar
  20. Hiroi, T., Zolensky, M. E., Pieters, C. M. and Lipshutz, M. E.: 1996, Thermal Metamorphism of the C, G, B, and F Asteroids seen the 0.7 µm, 3 µm, and UV Absorption Strength in Comparison with Carbonaceous Chondrites, Meteorit. Planet. Sci. 31, 321–327.Google Scholar
  21. Hiroi, T., Zolensky, M. E. and Peters, C. M.: 2001, The Tagish Lake Meteorite: A Possible Sample from a D-Type Asteroid, Science 293, 2234–2236.Google Scholar
  22. Kallemeyn, G. W., Rubin, A. E. and Wasson, J. T.: 1994, The Compositional Classification of Chondrites: VI. The CR Carbonaceous Chondrite Group, Geochim. Cosmochim. Acta 58, 2873–2888.Google Scholar
  23. Kminek, G., Botta, O., Glavin, D. P. and Bada, J. L.: 2002, Amino Acids in the Tagish Lake Meteorite, Meteorit. Planet. Sci. 37, 697–702.Google Scholar
  24. Kotra, R. K., Shimoyama, A., Ponnamperuma, C., Hare, P. E. and Yanai, K.: 1981, Organic Analysis of the Antarctic Carbonaceous Chondrites, in Y. Wolman (ed.), Origin of Life, D. Reidel Publishing, Dordrecht, The Netherlands, pp. 51–57.Google Scholar
  25. Kvenvolden, K. A., Glavin, D. P. and Bada, J. L.: 2000, Extraterrestrial Amino Acids in the MurchisonMeteorite: Re-evaluation after Thirty Years, in G. A. Goodfriend, M. J. Collins, M. L. Fogel, S. A. Macko and J. F. Wehmiller (eds), Perspectives in Amino Acid and Protein Geochemistry, Oxford University Press, New York, pp. 7–14.Google Scholar
  26. Leshin, L. A., Rubin, A. E. and McKeegan, K. D.: 1997, The Oxygen Isotopic Composition of Olivine and Pyroxene from CI Chondrites, Geochim. Cosmochim. Acta 61, 835–845.Google Scholar
  27. Levy, M., Miller, S. L., Brinton, K. L. F. and Bada, J. L.: 2000, Prebiotic Synthesis of Adenine and Amino Acids under Europa-like Conditions, Icarus 145, 609–613.Google Scholar
  28. Lodders, K. and Osborne, R.: 1999, Perspectives on the Comet-Asteroid-Meteorite Link, Space Sci. Rev. 90, 289–297.Google Scholar
  29. Luu, L., Jewitt, D. and Cloutis, E.: 1994, Near-Infrared Spectroscopy of Primitive Solar System Objects, Icarus 109, 133–144.Google Scholar
  30. Maurette, M., Brack, A., Kurat, G., Perreau, M. and Engrand, C.: 1995, Were Micrometeorites a Source of Prebiotic Molecules on the Early Earth?, Adv. Space Sci. 15, 113–126.Google Scholar
  31. McSween, H. Y.: 1979, Are Carbonaceous Chondrites Primitive or Processed? A Review, Rev. Geophys. Space Phys. 17, 1059–1078.Google Scholar
  32. Minh, Y. C. van Dieshoeck, E. F.: 2000, Astrochemistry: From Molecular Clouds to Planetary Systems, Astronomical Society of the Pacific, San Francisco, CA, U.S.A.Google Scholar
  33. Nelson, K. E., Levy, M. and Miller, S. L.: 2000, Peptide Nucleic Acids Rather than RNA may have been the First Genetic Molecule, Proc. Natl. Acad. Sci. 97, 3868–3871.Google Scholar
  34. Peltzer, E. T., Bada, J. L., Schlesinger, G. and Miller, S. L.: 1984, The Chemical Conditions on the Parent Body of the Murchison Meteorite: Some Conclusions Based on Amino, Hydroxy, and Dicarboxylic Acids, Adv. Space Sci. 4, 69–74.Google Scholar
  35. Pizzarello, S. and Cronin, J. R.: 1998, Alanine Enantiomers in the Murchison Meteorite, Nature 394, 236.Google Scholar
  36. Pizzarello, S. and Cronin, J. R.: 2000, Non-racemic Amino Acids in the Murray and Murchison Meteorites, Geochim. Cosmochim. Acta 64, 329–338.Google Scholar
  37. Pizzarello, S., Huang, Y., Becker, L., Poreda, R. J., Nieman, R. A., Cooper, G. and Williams, M.: 2001, The Organic Content of the Tagish Lake Meteorite, Science 293, 2236–2239.Google Scholar
  38. Shimoyama, A., Harada, K. and Yanai, K.: 1985, Amino Acids from the Yamato-791198 Carbonaceous Chondrite from Antarctica, Chem. Lett., 1183-1186.Google Scholar
  39. Woolum, D. S. and Cassen, P.: 1999, Astronomical Constraints on Nebular Temperatures: Implications for Planetesimal Formation, Meteorit. Planet. Sci. 34, 897–907.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Oliver Botta
    • 1
  • Daniel P. Glavin
    • 2
  • Gerhard Kminek
    • 1
  • Jeffrey L. Bada
    • 1
    Email author
  1. 1.Scripps Institution of OceanographyUniversity of California at San DiegoLa JollaU.S.A
  2. 2.Max-Planck-Institut für Chemie, Abtlg. KosmochemieMainzGermany

Personalised recommendations