Behavior Genetics

, Volume 32, Issue 3, pp 173–180 | Cite as

Sexual Differences for Emigration Behavior in Natural Populations of Drosophila melanogaster

  • Konstantin G. Iliadi
  • Natalia N. Iliadi
  • Eugenia L. Rashkovetsky
  • Svetlana V. Girin
  • Eviatar Nevo
  • Abraham B. Korol

Abstract

Evolutionary biology considers migration behavior as central in genetic structure of populations and speciation. Here we report on emigration patterns in Drosophila melanogaster behavior under laboratory conditions. For this study, a special apparatus was employed that includes a few important changes in its design and size compared with other known systems. The results presented in this paper were obtained on flies derived from natural populations of two contrasting climatic and geographical regions, from mesic northern and xeric southern parts of Israel. Highly significant difference between sexes in emigration activity was found for both localities. Emigration activity of females appeared to be higher than that of males. We also found that the flies' geographic origin affects emigration behavior (flies from a relatively closed natural system seem to display lower emigration ability than those from an open habitat), although broader sampling from various habitats is needed to confirm these results.

Emigration behavior locomotor activity Drosophila natural populations sexual differences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Begon, B. (1976). Dispersal, density and microdistribution in Drosophila subobscura Collin. J. Anim. Ecol. 45:441–456.Google Scholar
  2. Burnet, B., Burnet, L., Connolly, K., and Williamson, N. (1988). A genetic analysis of locomotor activity in Drosophila melanogaster. Heredity 61:111–119.Google Scholar
  3. Carson, H. L., Hardy, D. E., Spieth, H. T., and Stone, W. S. (1970). The evolutionary biology of the Hawaiian Drosophilidae. In: Essays in Evolution and Genetics in Honor of Theodosius Dobzhansky (M. K. Hecht, and W. C. Steere, eds.), pp. 437–543. Appleton-Centry-Crofts, NY.Google Scholar
  4. Connolly, K. (1966). Locomotor activity in Drosophila II: Selection for active and inactive strains. Anim. Behav. 14:444–449.Google Scholar
  5. Coyne, J. A., Boussy, I. A., Prout, T., Bryant, S. H., Jones, J. S., and Moore, J. A. (1982). Long-distance migration of Drosophila. Am. Nat. 119:589–595.Google Scholar
  6. Coyne, J. A., Bryant, S. H., and Turelli, M. (1987). Long-distance migration of Drosophila. Am. Nat. 129:847–861.Google Scholar
  7. Crumpacker, D. W., and Williams, J. S. (1973). Density, dispersion, and population structure in Drosophila pseudoobscura. Ecol. Monogr. 43:499–538.Google Scholar
  8. Dijken van, F. R., Sambeek van, M. P. J. W., and Scharloo, W. (1979). Divergent selection on locomotor activity in Drosophila melanogaster. Behav. Genet. 9:563–570.Google Scholar
  9. Dijken van, F. R., Stolwijk van, H., and Scharloo, W. (1986). Locomotor activity in Drosophila melanogaster. Neth. J. Zool. 35:438–454.Google Scholar
  10. Dobzhansky, T., and Wright, S. (1943). Genetics of natural populations. Genetics 28:304–340.Google Scholar
  11. Dobzhansky, T., and Powell, J. R. (1974). Rates of dispersal of Drosophila pseudoobscura and its relatives. Proc. R. Soc. Lond. B 187:281–298.Google Scholar
  12. Ehrman, L. (1969). The sensory basis of mate selection in Drosophila. Evolution 23:59–64.Google Scholar
  13. Ewing, A. W. (1963). Attempts to select for spontaneous activity in Drosophila melanogaster. Anim. Behav. 11:369–378.Google Scholar
  14. Fontdevila, A., and Carson, H. L. (1978). Spatial distribution and dispersal in a population of Drosophila. Am. Nat. 112:365–380.Google Scholar
  15. Hay, D. A. (1972). Genetical and maternal determinants of the activity and preening behavior of Drosophila melanogaster reared in different environments. Heredity 28:311–336.Google Scholar
  16. Hoffmann, A. A. (1987). A laboratory study of male territoriality in the sibling species D. melanogaster and D. simulans. Anim. Behav. 35:807–818.Google Scholar
  17. Hoffmann, A. A. (1988). Heritable variation for territorial success in two Drosophila melanogaster populations. Anim. Behav. 36: 1180–1189.Google Scholar
  18. Hoffmann, A. A. (1991). Heritable variation for territorial success in field-collected Drosophila melanogaster. Am. Nat. 138:668–679.Google Scholar
  19. Iliadi, K., Iliadi, N., Rashkovetsky, E., Nevo, E., and Korol, A. (2001) Sexual and reproductive behavior of Drosophila melanogaster from a microclimatically interslope differentiated population of “Evolution Canyon” (Mount Carmel, Israel) (Proc. R. Soc. Lond. B 268:2365–2374.Google Scholar
  20. Johnston, J. S., and Templeton, A. R. (1982). Dispersal and clines in Opuntia breeding Drosophila mercatorum and Drosophila hydei at Kamuela, Hawaii. In: Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila Model System. (J. S. F. Barker, and W. T. Starmer [eds.]) pp. 241–256. Academic Press, Sydney.Google Scholar
  21. Jones, J. S., Bryant, S. H., Lewontin, R. C., Moore, J. A., and Prout, T. (1981). Gene flow and the geographical distribution of a molecular polymorphism in Drosophila pseudoobscura. Genetics 98:157–178.Google Scholar
  22. Klaczko, L. B., Taylor, C. E., and Powell, J. R. (1986). Genetic variation for dispersal by Drosophila pseudoobscura and Drosophila persimilis. Genetics 112:229–235.Google Scholar
  23. Korol, A. B., Preygel, I. A., and Preygel, S. I. (1994). Recombination Variability and Evolution. Chapman and Hall, London.Google Scholar
  24. Korol, A., Rashkovetsky, E., Iliadi, K., Michalak, P., Ronin, Y., and Nevo, E. (2000). Nonrandom mating in Drosophila melanogaster laboratory populations derived from closely adjacent ecologically contrasting slopes at “Evolution canyon”. Proc. Nat. Acad. Sci. U.S.A. 97:12637–12642.Google Scholar
  25. Lindsley, D. L., and Zimm, G. G. (1992). The genome of Drosophila melanogaster. Academic Press, San Diego, CA.Google Scholar
  26. Michalak, P., Minkov, I., Helin, H., Lerman, D., Bettencourt, B., Feder, M., Korol, A., and Nevo, E. (2001). Genetic evidence for adaptation-driven incipient speciation of Drosophila melanogaster along a microclimatic contrast in ‘Evolution Canyon’, Israel (Proc. Nat. Acad. Sci. U.S.A. 98:13195–13200.Google Scholar
  27. McDonald, J., and Parsons, P. A. (1973). Dispersal activities of the sibling species Drosophila melanogaster and Drosophila simulans. Behav. Genet. 3:293–301.Google Scholar
  28. McInnis, D. O., Schaffer, H. E., and Mettler, L. E. (1982). Field dispersal and population sizes of native Drosophila from North Carolina. Am. Nat. 119:319–330.Google Scholar
  29. Mikasa, K. (1992). Quantitative genetic study on sexual difference in emigration behavior of Drosophila melanogaster in a natural population. Jap. J. Genet. 67:463–472.Google Scholar
  30. Mikasa, K., and Narise, T. (1979). The relation between dispersive behavior and temperature in Drosophila melanogaster. Jap. J. Genet. 54:217–228.Google Scholar
  31. Mikasa, K., and Narise, T. (1980). The relation between dispersive behavior and temperature. Dros. Inform. Serv. 55:111–112.Google Scholar
  32. Mikasa, K., and Narise, T. (1983). Interactive effects of temperature and geography on emigration behavior of Drosophila melanogaster: climatic and island factors. Behav. Genet. 13:29–41.Google Scholar
  33. Mikasa, K., and Narise, T. (1989). Interactive effects of temperature and geography on emigration behavior and productivity of Drosophila melanogaster in North and Western Japan. J. Arts Sci. Metkai 1:1–13.Google Scholar
  34. Narise, T. (1968). Migration and competition in Drosophila. Evolution 22:301–306.Google Scholar
  35. Nevo, E., Rashkovetsky, E., Pavlicek, T., and Korol, A. (1998). A complex adaptive syndrome in Drosophila caused by microclimatic contrasts. Heredity 80:9–16.Google Scholar
  36. Nevo, E. (2001). Evolution of genome-phenome diversity under environmental stress. Proc. Nat. Acad. Sci. U.S.A. 98:6233–6240.Google Scholar
  37. Parsons, P. A. (1963). Migration as a factor in natural selection. Genetica 33:184–206.Google Scholar
  38. Pylkov, K. V., Zhivotovsky, L. A., and Feldman, M. W. (1998). Migration versus mutation in the evolution of recombination under multilocus selection. Genet. Res. 71:247–256.Google Scholar
  39. Powell, J. R., Dobzhansky, T., Hook, J. E., and Wistrand, H. (1976). Genetics of natural populations. Genetics 82:493–506.Google Scholar
  40. Powell, J. R. (1997). Progress and Prospects in Evolutionary Biology: The Drosophila Model. Oxford University Press, Inc. NY.Google Scholar
  41. Rockwell, R. F., Grossfield, J., and Levine, L. (1978). Emigration response behavior. Egypt. J. Genet. Cytol. 7:123–136.Google Scholar
  42. Rockwell, R. F., and Levine, L. (1986). Emigration response behavior. Behav. Genet. 16:543–551.Google Scholar
  43. Sakai, K. I., Narise, T., Hiraizumi, Y., and Iyama, S. Y. (1958). Studies on competition in plants and animals. Evolution 12:93–101.Google Scholar
  44. Sewell, D. F. (1979). Effect of temperature and density variation on locomotor activity in Drosophila melanogaster: a comparison of behavioral measures. Anim. Behav. 27:312–313.Google Scholar
  45. Timofeef-Ressovsky, N. W., and Timofeef-Ressovsky, E. A. (1940). Population-genetische Vesuche am Drosophila. II. Aktionsbereiche von Drosophila funebris und Drosophila melanogaster. Z. Indukt. Abstammungs Vererbungsl. 79:44–49.Google Scholar
  46. Wallace, B. (1968). On the dispersal of Drosophila. Am. Nat. 102:85–87.Google Scholar
  47. Wiener, P., and Feldman, M. W. (1993). The effect of the mating system on the evolution of migration in a spatially heterogeneous population. Evol. Ecology 7:251–269.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Konstantin G. Iliadi
    • 1
    • 2
  • Natalia N. Iliadi
    • 1
  • Eugenia L. Rashkovetsky
    • 1
  • Svetlana V. Girin
    • 1
  • Eviatar Nevo
    • 1
  • Abraham B. Korol
    • 1
  1. 1.Institute of EvolutionUniversity of Haifa, Mount CarmelHaifaIsrael
  2. 2.Pavlov Institute of PhysiologySt. PetersburgRussia

Personalised recommendations