Differential Equations

, Volume 38, Issue 3, pp 384–391 | Cite as

Group Classification of Nonlinear Evolution Equations: I. Invariance Under Semisimple Local Transformation Groups

  • V. I. Lagno
  • A. M. Samoilenko

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Ovsyannikov, L.V., Gruppovoi analiz differentsial'nykh uravnenii (Group Analysis of Differential Equations), Moscow, 1978.Google Scholar
  2. 2.
    Ovsyannikov, L.V., Dokl. Akad. Nauk SSSR, 1959, vol. 125, no.3, pp. 492-495.Google Scholar
  3. 3.
    CRC Handbook of Lie Group Analysis of Differential Equations, Ibragimov, N., ed., CRS Press, 1994, vol. 1.Google Scholar
  4. 4.
    Dorodnitsyn, V.A., Zh. Vychislit. Mat. Mat. Fiz., 1982, vol. 22, no.6, pp. 1393-1400.Google Scholar
  5. 5.
    Oron, A. and Rosenau, P., Phys. Lett. A, 1986, vol. 118, no.4, pp. 172-176.Google Scholar
  6. 6.
    Akhatov, I.Sh., Gazizov, R.K., and Ibragimov, N.Kh., Dokl. Akad. Nauk SSSR, 1987, vol. 293, no.5, pp. 1033-1035.Google Scholar
  7. 7.
    Edwards, M.P., Phys. Lett. A, 1994, vol. 190, pp. 149-154.Google Scholar
  8. 8.
    Gandarias, M.L., J. Phys. A, 1996, vol. 29, pp. 607-633.Google Scholar
  9. 9.
    Cherniha, R. and Serov, M., Euro. Jnl. of Applied Mathematics, 1998, vol. 9, pp. 527-542.Google Scholar
  10. 10.
    Ovsyannikov, L.V., Zh. Prikl. Mekhaniki i Tekhn. Fiziki, 1960, no. 3, pp. 126-145.Google Scholar
  11. 11.
    Zhdanov, R.Z. and Lahno, V.I., J. Phys. A, 1999, vol. 32, pp. 7405-7418.Google Scholar
  12. 12.
    Gagnon, L. and Winternitz, P., J. Phys. A, 1993, vol. 26, pp. 7061-7076.Google Scholar
  13. 13.
    Barut, A. and Ronchka, R., Teoriya predstavlenii grupp i ee prilozheniya (Theory of Group Representations and Its Applications), Moscow, 1980, vol. 1.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • V. I. Lagno
    • 1
    • 2
  • A. M. Samoilenko
    • 1
    • 2
  1. 1.Poltava State Pedagogical UniversityPoltavaUkraine
  2. 2.Institute for Mathematics, National Academy of SciencesKievUkraine

Personalised recommendations