Pharmaceutical Research

, Volume 13, Issue 12, pp 1770–1776 | Cite as

Biocompatibility Issues of Implantable Drug Delivery Systems

  • Haesun Park
  • Kinam Park
biomaterials biocompatibility implantable drug delivery systems implantable glucose sensors hydrogels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Sank, J. Chalabian-Baliozian, D. Ertl, R. Sherman, M. Nimni, and T. L. Tuan. Cellular responses to silicone and polyurethane prosthetic surfaces. J. Surg. Res. 54:12–20 (1993).Google Scholar
  2. 2.
    A. Campbell and N. Brautbar. Norplant: Systemic immunological complications: Case report. Toxicology And Industrial Health 11:41–47 (1995).Google Scholar
  3. 3.
    R. Chuong, M. A. Piper, and T. J. Boland. Recurrent giant cell reaction to residual proplast in the temporomandibular joint. Oral Surg. Oral Med. Oral Path. 76:16–19 (1993).Google Scholar
  4. 4.
    E. Duncan. Biomaterials. What is a biomaterial? Med. Dev. Diag. Ind. 12:138–142 (1990).Google Scholar
  5. 5.
    S. Downes. Growth hormone release from biomaterials. In D. L. Wise, D. J. Trantolo, D. E. Altobelli, M. J. Yaszemski, J. D. Gresser, and E. R. Schwartz (ed.), Encyclopedic Handbook of Biomaterials and Bioengineering. Vol. 2, Part A: Materials, Marcel Dekker, New York, NY, 1995, 1135–1149.Google Scholar
  6. 6.
    D. L. Coleman, R. N. King, and J. D. Andrade. The foreign body reaction: a chronic inflammatory response. J. Biomed. Mater. Res. 8:199–211 (1974).Google Scholar
  7. 7.
    J. Black. Biological Performance of Materials. Fundamentals of Biocompatibility. Marcel Dekker, New York, NY, 1992, 3–9, 125–147.Google Scholar
  8. 8.
    R. E. Marchant. The cage implant system for determining in vivo biocompatibility of medical device materials. Fundamental And Applied Toxicology 13:217–227 (1989).Google Scholar
  9. 9.
    K. Park and S. L. Cooper. Importance of composition of the initial protein layer and platelet spreading in acute surface-induced thrombosis. Trans. Amer. Soc. Artif. Inter. Organs 31:483–488 (1985).Google Scholar
  10. 10.
    M. Amiji and K. Park. Surface modification of polymeric biomaterials with poly(ethylene oxide), albumin, and heparin for reduced thrombogenicity. J. Biomater. Sci. Polymer Edn. 4:217–234 (1993).Google Scholar
  11. 11.
    S. T. Milner. Polymer brushes. Science 251:905–914 (1991).Google Scholar
  12. 12.
    T. Peng, P. Gibula, K. D. Yao, and M. F. A. Goosen. Role of polymers in improving the results of stenting in coronary arteries. Biomaterials 17:685–694 (1996).Google Scholar
  13. 13.
    T. L. Lambert, V. Dev, F. Litvack, J. Forrester, and N. L. Eigler. Localized arterial delivery from a polymer coated removable metallic stent: kinetics and bioactivity of forskolin. Circulation 88:I-310 (1993).Google Scholar
  14. 14.
    J. M. Anderson. Inflammatory response to implants. Trans. Am. Soc. Artif. Intern. Organs 34:101–107 (1988).Google Scholar
  15. 15.
    J. B. Park. Biomaterials Science and Engineering, Plenum Press, New York, NY, 1984, 171–192.Google Scholar
  16. 16.
    A. A. Sharkawy, M. R. Neuman, and W. M. Reichert. Design considerations for biosensor-based drug delivery systems. In K. Park (ed.), Controlled Drug Delivery: Challenges and Strategies, American Chemical Society, Washington, D.C., in press, Chap. 9.Google Scholar
  17. 17.
    F. H. Silver. Breast implants, Chapman & Hall, New York, NY, 1994, 236–249.Google Scholar
  18. 18.
    J. S. Tiffany and D. J. Petraitis. Silicone biomaterials. In D. L. Wise, D. J. Trantolo, D. E. Altobelli, M. J. Yaszemski, J. D. Gresser, and E. R. Schwartz (eds.), Encyclopedic Handbook of Biomaterials and Bioengineering. Vol. 2, Part A: Materials, Marcel Dekker, New York, NY, 1995, 1675–1691.Google Scholar
  19. 19.
    P. D. Darney. Hormonal implants: Contraception for a new century. American Journal Of Obstetrics And Gynecology 170:1536–1543 (1994).Google Scholar
  20. 20.
    D. Granchi, D. Cavedagna, G. Ciapetti, S. Stea, P. Schiavon, R. Giuliani, and A. Pizzoferrato. Silicone breast implants: The role of immune system on capsular contracture formation. J. Biomed.l Mater. Res. 29:197–202 (1995).Google Scholar
  21. 21.
    C. R. Ward, C. M. Peterson, and H. H. Hatasaka. A hook-traction technique for Norplant removal. Obstetrics & Gynecology 86:848–850 (1995).Google Scholar
  22. 22.
    G. S. Letterie and M. Garnaas. Localization of “lost”: Norplant capsules using compression film screen mammography. Obstetrics & Gynecology 85:886–887 (1995).Google Scholar
  23. 23.
    G. Velho, P. Froguel, D. R. Thévenot, and G. Reach. In vivo calibration of a subcutaneous glucose sensor for determination of subcutaneous glucose kinetics. Diab. Nutr. Metab. 1:227–233 (1988).Google Scholar
  24. 24.
    J. A. Tamada, N. J. V. Bohannon, and R. O. Potts. Measurement of glucose in diabetic subjects using noninvasive transdermal extraction. Nature Medicine 1:1198–1201 (1995).Google Scholar
  25. 25.
    M. Shichiri, Y. Yamasaki, R. Kawamori, N. Hakui, and H. Abe. Wearable artificial pancreas with needle-type glucose sensor. Lancet 2:1129–1231 (1982).Google Scholar
  26. 26.
    V. Poitout, D. Moatti-Sirat, G. Reach, Y. Zhang, G. S. Wilson, F. Lemonnier, and J. C. Klein. A glucose monitoring system for on line estimation in man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue and a wearable control unit. Diabetologia 36:658–663 (1993).Google Scholar
  27. 27.
    G. Reach. Towards self-regulation closed-loop treatment for diabetes. Annales D'endocrinologie 56:43–48 (1995).Google Scholar
  28. 28.
    U. Fisher, K. Rebrin, T. V. Woedtke, and P. Abel. Clinical usefulness of the glucose concentration in the subcutaneous tissue—properties and pitfalls of electrochemical biosensors. Hormone & Metabolic Res. 26:515–522 (1994).Google Scholar
  29. 29.
    D. Moatti-Sirat, F. Capron, V. Poitout, G. Reach, D. S. Bindra, Y. Zhang, G. S. Wilson, and D. R. Thévenot. Toward continuous glucose monitoring: in vivo evaluation of a miniaturized glucose sensor implanted for several days in rat subcutaneous tissue. Diabetologia 35:224–230 (1992).Google Scholar
  30. 30.
    W. Kerner, M. Kiwit, B. Linke, F. S. Keck, H. Zier, and F. Pfeiffer. The function of a hydrogen peroxide detecting electroenzymatic glucose electrode is markedly impaired in human subcutaneous tissue and plasma. Biosensors and Bioelectronics 8:473–482 (1993).Google Scholar
  31. 31.
    V. Sluzky, J. A. Tamada, A. M. Klibanov, and R. Langer. Kinetics of insulin aggregation in aqueous solutions upon agitation in the presence of hydrophobic surfaces. Proc. Natl. Aca. Sci. U.S.A. 88:9377–9381 (1991).Google Scholar
  32. 32.
    W. D. Lougheed, H. Woulfe-Flanagan, J. R. Clement, and A. M. Albisser. Insulin aggregation in artificial delivery systems. Diabetologia 19:1–9 (1980).Google Scholar
  33. 33.
    P. Soon-Shiong, E. Feldman, R. Nelson, R. Heintz, Q. Yao, Z. Yao, T. Zheng, N. Merideth, and G. Skjak-Braek. Long-term reversal of diabetes by the injection of immunoprotected islets. Proc. Natl. Acad. Sci. U.S.A. 90:5843–5847 (1993).Google Scholar
  34. 34.
    P. Soon-Shiong, R. E. Heintz, N. Merideth, Q. X. Yao, Z. Yao, T. Zheng, M. Murphy, M. K. Moloney, and M. Schmehl. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 343:950–951 (1994).Google Scholar
  35. 35.
    B. Thu, P. Bruheim, T. Espevik, O. Smidsrod, P. Soon-Shiong, and G. Skjak-Braek. Alginate polycation microcapsules. II. Some functional properties. Biomaterials 17:1069–1079 (1996).Google Scholar
  36. 36.
    A. S. Sawhney, C. P. Pathak, and J. A. Hubbell. Modification of islet of Langerhans surfaces with immunoprotective poly(ethylene glycol) coatings via interfacial photopolymerization. Biotech. Bioeng. 44:383–386 (1994).Google Scholar
  37. 37.
    H. T. Lau, M. Yu, A. Fontana, and C. J. Stoeckert Jr. prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice. Science 273:109–112 (1996).Google Scholar
  38. 38.
    R. C. Wood, E. L. Lecluyse, and J. A. Fix. Assessment of a model for measuring drug diffusion through implant-generated fibrous capsule membranes. Biomaterials 16:957–959 (1995).Google Scholar
  39. 39.
    L. Christenson, L. Wahlberg, and P. Aebischer. Mast cells and tissue reaction to intraperitoneally implanted polymer capsules. Journal Of Biomedical Materials Research 25:1119–1132 (1991).Google Scholar
  40. 40.
    J. S. Schultz, S. Mansouri, and I. J. Goldstein. Affinity sensor: a new technique for developing implantable sensors for glucose and other metabolites. Diabetes Care 5:245–253 (1982).Google Scholar
  41. 41.
    J. R. Lakowicz. Emerging biomedical applications of time-resolved fluorescence spectroscopy. Volume 4. Probe Design and Chemical Sensing. In J. R. Lakowicz (ed.), Topics in Fluorescence Spectroscopy, Plenum Press, New York, NY, 1994, 1–19.Google Scholar
  42. 42.
    A. A. Obaidat and K. Park. Characterization of the phase transition of glucose sensitive hydrogels. Proc. Intern. Symp. Control. Rel. Bioact. Mater. 23:214–215 (1996).Google Scholar
  43. 43.
    A. A. Obaidat. Characterization of glucose dependent gel-sol phase transition of the polymeric glucose-concanavalin A hydrogel system. Ph.D. thesis, Purdue University, West Lafayette, IN (1996).Google Scholar
  44. 44.
    T. Miyata, A. Jikihara, and K. Nakamae. Preparation of poly(2-glucosyloxyethyl methacrylate)-concanavalin A complex hydrogel and its glucose sensitivity. Macromol. Chem. Phys. 197:1135–1146 (1996).Google Scholar
  45. 45.
    L. Shieh, J. Tamada, I. Chen, J. Pang, A. Domb, and R. Langer. Erosion of a new family of biodegradable polyanhydrides. J. Biomed. Mater. Res. 28:1465–1475 (1994).Google Scholar
  46. 46.
    L. W. Seymour, R. Duncan, J. Duffy, S. Y. Ng, and J. Heller. Poly(ortho ester) matrices for controlled release of the antitumour agent 5-fluorouracil. J. Cont. Rel. 31:201–206 (1994).Google Scholar
  47. 47.
    J. Fiordeliso, S. Bron, and J. Kohn. Design, synthesis and preliminary characterization of tyrosine-containing polyarylates: New biomaterials for medical applications. J. Biomater. Sci. Polymer Edn. 5:497–510 (1994).Google Scholar
  48. 48.
    D. W. Urry. Elastic biomolecular machines. Sci.c Amer. 272:64–69 (1995).Google Scholar
  49. 49.
    J. Cappello. The biological production of protein polymers and their use. Trends In Biotechnology 8:309–311 (1990).Google Scholar
  50. 50.
    M. Richards, B. I. Dahiyat, D. M. Arm, P. R. Brown, and K. W. Leong. Evaluation of polyphosphates and polyphosphonates as degradable biomaterials. J. Biomed. Mater. Res. 25:1151–1168 (1991).Google Scholar
  51. 51.
    S. A. Wainwright. What we can learn from soft biomaterials and structures. In M. Sarikaya and I. A. Aksay (ed.), Biomimetics. Design and Processing of Materials, American Institute of Physics, Woodbury, NY, 1995, 1–12.Google Scholar
  52. 52.
    T. A. Horbett and A. S. Hoffman. Bovine plasma protein adsorption onto radiation-grafted hydrogels based on hydroxyethyl methcarylate and N-vinyl pyrrolidone. Am. Chem. Soc. Adv. Chem. Ser. 145:230–235 (1975).Google Scholar
  53. 53.
    J. A. Braatz, A. H. Heifetz, and C. L. Kehr. A new hydrophilic polymer for biomaterial coatings with low protein adsorption. J. Biomater. Sci. Polymer Edn. 3:451–462 (1992).Google Scholar
  54. 54.
    O. Wichterle and D. Lim. Hydrophilic gels for biological use. Nature 185:117–118 (1960).Google Scholar
  55. 55.
    B. D. Ratner. Biomedical applications of hydrogels: review and critical appraisal. In D. F. Williams (ed.), Biocompatibility of Clinical Implant Materials, Vol. II, CRC Press, Boca Raton, FL, 1981, Chap. 7.Google Scholar
  56. 56.
    G. F. Klomp, H. Hashiguchi, P. C. Ursell, Y. Takeda, T. Taguchi, and W. H. Dobelle. Macroporous hydrogel membranes for a hybrid artificial pancreas. II. Biocompatibility. J. Biomed. Mater. Res. 17:865–871 (1983).Google Scholar
  57. 57.
    J. Honiger, S. Darquy, G. Reach, E. Muscat, M. Thomas, and C. Collier. Preliminary report on cell encapsulation in a hydrogel made of a biocompatible material, AN69, for the development of a bioartificial pancreas. International Journal Of Artificial Organs 17:46–52 (1994).Google Scholar
  58. 58.
    H. Iwata, K. Kobayashi, T. Takagi, T. Oka, H. Yang, H. Amemiya, T. Tsuji, and F. Ito. Feasibility of agarose microbeads with xenogeneic islets as a bioartificial pancreas. J. Biomed. Mater. Res. 28:1003–1011 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Haesun Park
    • 1
  • Kinam Park
    • 1
  1. 1.School of PharmacyPurdue UniversityWest Lafayette

Personalised recommendations