Pharmaceutical Research

, Volume 6, Issue 8, pp 660–666 | Cite as

Route of Administration and Sex Differences in the Pharmacokinetics of Aspirin, Administered as Its Lysine Salt

  • Leon Aarons
  • Katie Hopkins
  • Malcolm Rowland
  • S. Brossel
  • Jean-François Thiercelin


One thousand milligrams of aspirin, as its lysine salt, was administered intravenously, orally, and intramuscularly to nine male and nine female young healthy adult volunteers. After intravenous injection mean (±SD) values of clearance, steady-state volume of distribution, and terminal half-life were 12.2 ± 2.2 ml/min/kg, 0.219 ± 0.042 liter/kg, and 15.4 ± 2.5 min, respectively, with no differences between males and females. Following oral administration aspirin was absorbed more quickly in females than in males (mean absorption times of 16.4 and 21.3 min, respectively) although the bioavailability, 54%, was the same in both groups. In contrast, following intramuscular administration, aspirin was absorbed more slowly in females than males (mean absorption times of 97 and 53 min, respectively) but again the bioavailability, 89%, was the same in both groups. The data suggest that in the female the intramuscular injection is going into fat. Salicylic acid concentration–time profiles showed a less pronounced sex difference and were comparable among the three routes of administration.

aspirin pharmacokinetics intramuscular sex differences rate of absorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Lester, G. Lolli, and L. A. Greenberg. J. Pharmacol. Exp. Ther. 87:329–342 (1946).Google Scholar
  2. 2.
    M. Ali, J. W. D. McDonald, J. J. Thiessen, and P. E. Coates. Stroke 11:9–25 (1980).Google Scholar
  3. 3.
    The Canadian co-operative study group. N. Engl. J. Med. 299:53–59 (1978).Google Scholar
  4. 4.
    K. Kortilla, O. M. Pentti, and J. Auvinen. Br. J. Anaesth. 52:613–617 (1980).Google Scholar
  5. 5.
    W. J. Kweekel-De Vries, J. Spierdijk, H. Mattie, and J. M. H. Hermans. Br. J. Anaesth. 46:133–135 (1974).Google Scholar
  6. 6.
    M. Rowland and S. Riegelman. J. Pharm. Sci. 57:1313–1318 (1968).Google Scholar
  7. 7.
    H. Voss, V. Cöbel, C. Petrich, and J. Pütter. Klin. Wochenschr. 56:1119–1123 (1978).Google Scholar
  8. 8.
    B. E. Cham, D. Johns, F. Bochner, D. M. Imhoff, and M. Rowland. Clin. Chem. 25:1420–1425 (1979).Google Scholar
  9. 9.
    C. M. Metzler, G. L. Elfring, and A. J. McEwan. A Users Manual for NONLIN and Associated Programs, Upjohn, Kalamazoo, Mich., 1974.Google Scholar
  10. 10.
    M. Gibald and D. Perrier. Pharmacokinetics, 2nd ed., Marcel Dekker, New York, 1982.Google Scholar
  11. 11.
    M. Von Hattingberg and D. Brockmeier. In G. Bozler and J. M. Van Rossum (eds.), Pharmacokinetics During Drug Development: Data Analysis and Evaluation Techniques, Gustav Fischer Verlag, Stuttgart, 1982, pp. 315–323.Google Scholar
  12. 12.
    D. P. Vaughan and M. Dennis. J. Pharm. Sci. 67:663–665 (1978).Google Scholar
  13. 13.
    C. H. Hull and N. H. Nie. SPSS Update 7–9, McGraw-Hill, New York, 1981, pp. 1–79.Google Scholar
  14. 14.
    C. Chatfield and A. J. Collins. Introduction to Multivariate Analysis, Chapman and Hall, London, 1980. p. 124.Google Scholar
  15. 15.
    D. F. Morrison. Multivariate Statistical Methods, 2nd ed., McGraw-Hill Kogakusha, Tokyo, 1976, pp. 150–153.Google Scholar
  16. 16.
    M. S. Roberts, P. A. Cossum, and D. Kilpatrick, N. Engl. J. Med. 312:1388–1389 (1985).Google Scholar
  17. 17.
    M. Rowland, S. Riegelman, P. A. Harris, and S. D. Sholkoff. J. Pharm. Sci. 16:379–385 (1972).Google Scholar
  18. 18.
    K. Wilson. Clin. Pharmacokin. 9:189–202 (1984).Google Scholar
  19. 19.
    P. C. Ho, E. J. Triggs, D. W. A. Bourne, and V. J. Heazlewood. Br. J. Clin. Pharmacol. 19:675–684 (1985).Google Scholar
  20. 20.
    S. L. Miaskiewicz, C. A. Shively, and E. S. Vessel. Clin. Pharmacol. Ther. 31:30–37 (1982).Google Scholar
  21. 21.
    M. Sechserova, T. Sechser, H. Raskova, J. Jecna, J. Elis, and J. Vanacek. Arzneim-Forsch (Drug Res.) 25:1581–1582 (1975).Google Scholar
  22. 22.
    Z. Trnavska and K. Trnavska. Eur. J. Clin. Pharmacol. 25:679–682 (1982).Google Scholar
  23. 23.
    A. Windorfer, W. Kuenzer, and R. Urbanek. Eur. J. Clin. Pharmacol. 7:227–231 (1974).Google Scholar
  24. 24.
    M. Booth, J. N. Hunt, J. M. Miles, and F. A. Murray. Lancet 1:657–659 (1957).Google Scholar
  25. 25.
    R. A. Vukovich, L. J. Brannick, A. A. Sugerman, and E. S. Neiss. Clin. Pharmacol. Ther. 18:215–220 (1975).Google Scholar
  26. 26.
    E. S. M. Modderman, F. W. H. M. Merkus, J. Zuidema, H. W. Hilber, and T. Warndorff. Int. J. Leprosy 51:359 (1983).Google Scholar
  27. 27.
    E. F. Evans, J. D. Proctor, M. J. Fratkin, J. Velandia, and A. J. Wasserman. Clin. Pharmacol. Ther. 17:44–47 (1974).Google Scholar
  28. 28.
    M. L. Schwartz, M. B. Meyer, B. G. Covino, R. M. Narang, V. Sethi, A. J. Schwartz, and P. Kamp. J. Clin. Pharmacol. 14:77–83 (1974).Google Scholar
  29. 29.
    W. P. Cockshott, G. T. Thompson, L. J. Howlett, and E. T. Seeley. N. Engl. J. Med. 307:356–358 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Leon Aarons
    • 1
  • Katie Hopkins
    • 2
  • Malcolm Rowland
    • 1
  • S. Brossel
    • 3
  • Jean-François Thiercelin
    • 3
  1. 1.Department of PharmacyUniversity of ManchesterManchesterU.K.
  2. 2.Medical Department, Medeval LimitedUniversity of ManchesterManchesterU.K.
  3. 3.Laboratoires d'Etudes et de Recherches Synthelabo (LERS)ParisFrance

Personalised recommendations