Advertisement

Molecular and Cellular Biochemistry

, Volume 234, Issue 1, pp 229–237 | Cite as

Role of nitric oxide in liver ischemia and reperfusion injury

  • Ian N. Hines
  • Shigeyuki Kawachi
  • Hirohisa Harada
  • Kevin P. Pavlick
  • Jason M. Hoffman
  • Sulaiman Bharwani
  • Robert E. Wolf
  • Matthew B. Grisham
Article

Abstract

The present study was designed to assess the role of endothelial cell and inducible nitric oxide synthase (eNOS, iNOS)-derived NO in ischemia/reperfusion (I/R)-induced pro-inflammatory cytokine expression and tissue injury in a murine model of hepatic I/R. Forty-five min of partial hepatic ischemia and 3 h of reperfusion resulted in a significant increase in liver injury as assessed by serum alanine aminotransferase and histopathology which occurred in the absence of neutrophil infiltration. Both iNOS and eNOS deficient mice exhibited enhanced liver injury when compared to their wild type (wt) controls again in the absence of neutrophil infiltration. Interestingly, message expression for both tumor necrosis factor-alpha (TNF-α) and interleukin 12 (IL-12) were enhanced in eNOS, but not iNOS-deficient mice at 1 h post-ischemia when compared to their wt controls. In addition, eNOS message expression appeared to be up-regulated between 1 and 3 h of reperfusion in wt mice while iNOS deficient mice exhibited substantial increases at 1 but not 3 h. Taken together, these data demonstrate the ability of eNOS and iNOS to protect the post-ischemic liver, however their mechanisms of action may be very different.

cytokines inflammation IL-12 microcirculation mouse neutrophils reactive oxygen species transplantation TNF-α 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fan C, Zwacka RM, Engelhardt JF: Therapeutic approaches for ischemia/reperfusion injury in the liver. J Mol Med 77: 577–592, 1999PubMedGoogle Scholar
  2. 2.
    Jaeschke H: Mechanisms of reperfusion injury after warm ischemia of the liver. J Hepatobil Pancreat Surg 5: 402–408, 1998Google Scholar
  3. 3.
    Simpson KJ, Lukacs NW, Colletti L, Strieter RM, Kunkel SL: Cytokines and the liver. J Hepatol 27: 1120–1132, 1997PubMedGoogle Scholar
  4. 4.
    Lemasters JJ, Thurman RG: Reperfusion injury after liver preservation for transplantation. Annu Rev Pharmacol Toxicol 37: 327–338, 1997PubMedGoogle Scholar
  5. 5.
    Lichtman SN, Lemasters JJ: Role of cytokines and cytokine-producing cells in reperfusion injury to the liver. Semin Liver Dis 19: 171–187, 1999PubMedGoogle Scholar
  6. 6.
    Jaeschke H, Smith CW: Cell adhesion and migration. III. Leukocyte adhesion and transmigration in the liver vasculature. Am J Physiol 273: G1169–G1173, 1997PubMedGoogle Scholar
  7. 7.
    Jaeschke H: Cellular adhesion molecules: Regulation and functional significance in the pathogenesis of liver diseases. Am J Physiol 273: G602–G611, 1997PubMedGoogle Scholar
  8. 8.
    Turrens JF, Beconi M, Barilla J, Chavez UB, McCord J M: Mitochondrial generation of oxygen radicals during reoxygenation of ischemic tissues. Free Radic Res Commun 12- 13: 681–689, 1991PubMedGoogle Scholar
  9. 9.
    Rauen U, Viebahn R, Lauchart W, de Groot H: The potential role of reactive oxygen species in liver ischemia/reperfusion injury following liver surgery. Hepatogastroenterology 41: 333–336, 1994PubMedGoogle Scholar
  10. 10.
    Du G, Mouithys-Mickalad A, Sluse FE: Generation of superoxide anion by mitochondria and impairment of their functions during anoxia and reoxygenation in vitro. Free Radic Biol Med 25: 1066–1074, 1998PubMedGoogle Scholar
  11. 11.
    Jaeschke H, Bautista AP, Spolarics Z, Spitzer JJ: Superoxide generation by Kupffer cells and priming of neutrophils during reperfusion after hepatic ischemia. Free Radic Res Commun 15: 277–284, 1991PubMedGoogle Scholar
  12. 12.
    Muller MJ, Vollmar B, Friedl HP, Menger MD: Xanthine oxidase and superoxide radicals in portal triad crossclamping-induced microvascular reperfusion injury of the liver. Free Radic Biol Med 21: 189–197, 1996PubMedGoogle Scholar
  13. 13.
    Janssen-Heininger YM, Poynter ME, Baeuerle PA: Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic Biol Med 28: 1317–1327, 2000PubMedGoogle Scholar
  14. 14.
    Zwacka RM, Zhou W, Zhang Y, Darby CJ, Dudus L, Halldorson J, Oberley L, Engelhardt JF: Redox gene therapy for ischemia/reperfusion injury of the liver reduces AP1 and NF-kappa B activation. Nat Med 4: 698–704, 1998PubMedGoogle Scholar
  15. 15.
    Rahman I, MacNee W: Regulation of redox glutathione levels and gene transcription in lung inflammation: Therapeutic approaches. Free Radic Biol Med 28: 1405–1420, 2000PubMedGoogle Scholar
  16. 16.
    Williams G, Giroir BP: Regulation of cytokine gene expression: Tumor necrosis factor, interleukin-1, and the emerging biology of cytokine receptors. New Horizons 3: 276–287, 1995PubMedGoogle Scholar
  17. 17.
    Sutterwala FS, Mosser DM: The taming of IL-12: Suppressing the production of pro-inflammatory cytokines. J Leuk Biol 65: 543–551, 1999Google Scholar
  18. 18.
    Bellisarii FL, Gallina S, De Caterina R: Tumor necrosis factor-alpha and cardiovascular diseases. Ital Heart J 2: 408–417, 2001PubMedGoogle Scholar
  19. 19.
    Aggarwal BB: Tumor necrosis factors receptor associated signaling molecules and their role in activation of apoptosis, JNK and NF-kappa B. Ann Rheum Dis 59(suppl 1): 6–16, 2000Google Scholar
  20. 20.
    Colletti LM, Remick DG, Burtch GD, Kunkel SL, Strieter RM, Campbell DA: Role of tumor necrosis factor-alpha in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat. J Clin Invest 85: 1936–1943, 1990PubMedGoogle Scholar
  21. 21.
    Elzey BD, Griffith TS, Herndon JM, Barreiro R, Tschopp J, Ferguson TA: Regulation of Fas ligand-induced apoptosis by TNF. J Immunol 167: 3049–3056, 2001PubMedGoogle Scholar
  22. 22.
    Schutze S, Wiegmann K, Machleidt T, Kronke M: TNF-induced activation of NF-kappa B. Immunobiology 193: 193–203, 1995PubMedGoogle Scholar
  23. 23.
    Myers KJ, Eppihimer MJ, Hall L, Wolitzky B: Interleukin-12-induced adhesion molecule expression in murine liver. Am J Pathol 152: 457–468, 1998PubMedGoogle Scholar
  24. 24.
    Lentsch AB, Yoshidome H, Kato A, Warner RL, Cheadle WG, Ward PA, Edwards MJ: Requirement for interleukin-12 in the pathogenesis of warm hepatic ischemia/reperfusion injury in mice. Hepatology 30: 1448–1453, 1999PubMedGoogle Scholar
  25. 25.
    Kobayashi H, Nonami T, Kurokawa T, Takeuchi Y, Harada A, Nakao A, Takagi H: Role of endogenous nitric oxide in ischemia-reperfusion injury in rat liver. J Surg Res 59: 772–779, 1995PubMedGoogle Scholar
  26. 26.
    Wang Y, Mathews WR, Guido DM, Farhood A, Jaeschke H: Inhibition of nitric oxide synthesis aggravates reperfusion injury after hepatic ischemia and endotoxemia. Shock 4: 282–288, 1995PubMedGoogle Scholar
  27. 27.
    Koeppel TA, Thies JC, Schemmer P, Trauner M, Gebhard MM., Otto G, Post S: Inhibition of nitric oxide synthesis in ischemia/reperfusion of the rat liver is followed by impairment of hepatic microvascular blood flow. J Hepatol 27: 163–169, 1997PubMedGoogle Scholar
  28. 28.
    Liu P, Yin K, Nagele R, Wong PY: Inhibition of nitric oxide synthase attenuates peroxynitrite generation, but augments neutrophil accumulation in hepatic ischemia-reperfusion in rats. J Pharmacol Exp Ther 284: 1139–1146, 1998PubMedGoogle Scholar
  29. 29.
    Liu P, Xu B, Hock CE, Nagele R, Sun FF, Wong PY: NO modulates Pselectin and ICAM-1 mRNA expression and hemodynamic alterations in hepatic I/R. Am J Physiol 275: H2191–H2198, 1998PubMedGoogle Scholar
  30. 30.
    Jourd'Heuil D, Miles AM, Grisham MB: Effects of nitric oxide on iron or hemoprotein-catalyzed oxidative reactions. Meth Enzymol 301: 437–444, 1999PubMedGoogle Scholar
  31. 31.
    Kanno S, Lee PC, Zhang Y, Ho C, Griffith BP, Shears LL, Billiar TR: Attenuation of myocardial ischemia/reperfusion injury by super-induction of inducible nitric oxide synthase. Circulation 101: 2742–2748, 2000PubMedGoogle Scholar
  32. 32.
    Mojena M, Hortelano S, Castrillo A, Diaz-Guerra MJ, Garcia-Barchino MJ, Saez GT, Bosca L: Protection by nitric oxide against liver inflammatory injury in animals carrying a nitric oxide synthase-2 transgene. FASEB J 15: 583–585, 2001PubMedGoogle Scholar
  33. 33.
    Marshall HE, Merchant K, Stamler JS: Nitrosation and oxidation in the regulation of gene expression. FASEB J 14: 1889–1900, 2000PubMedGoogle Scholar
  34. 34.
    Isobe M, Katsuramaki T, Hirata K, Kimura H, Nagayama M, Matsuno T: Beneficial effects of inducible nitric oxide synthase inhibitor on reperfusion injury in the pig liver. Transplantation 68: 803–813, 1999PubMedGoogle Scholar
  35. 35.
    Wang Y, Lawson JA, Jaeschke H: Differential effect of 2-aminoethylisothiourea, an inhibitor of the inducible nitric oxide synthase, on microvascular blood flow and organ injury in models of hepatic ischemia-reperfusion and endotoxemia. Shock 10: 20–25, 1998PubMedGoogle Scholar
  36. 36.
    MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, Trumbauer M, Stevens K, Xie QW, Sokol K, Hutchinson N: Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase (published erratum appears in Cell 1995 Jun 30; 81(7): following 1170). Cell 81: 641–650, 1995PubMedGoogle Scholar
  37. 37.
    Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC: Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377: 239–242, 1995PubMedGoogle Scholar
  38. 38.
    Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC: Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75: 1273–1286, 1993PubMedGoogle Scholar
  39. 39.
    Kawachi S, Hines IN, Laroux FS, Hoffman J, Bharwani S, Gray L, Leffer D, Grisham MB: Nitric oxide synthase and postischemic liver injury. Biochem Biophys Res Commun 276: 851–854, 2000PubMedGoogle Scholar
  40. 40.
    Hines IN, Harada H, Bharwani S, Pavlick KP, Hoffman JM, Grisham MB: Enhanced post-ischemic liver injury in iNOS-deficient mice: A cautionary note. Biochem Biophys Res Commun 284: 972–976, 2001PubMedGoogle Scholar
  41. 41.
    Lentsch AB, Yoshidome H, Cheadle WG, Miller FN, Edwards MJ: Chemokine involvement in hepatic ischemia/reperfusion injury in mice: Roles for macrophage inflammatory protein-2 and KC. Hepatology 27: 507–512 and 1172- 1177, 1998PubMedGoogle Scholar
  42. 42.
    Kubes P, Suzuki M, Granger DN: Nitric oxide: An endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88: 4651–4655, 1991PubMedGoogle Scholar
  43. 43.
    Lefer DJ, Jones SP, Girod WG, Baines A, Grisham MB, Cockrell AS, Huang PL, Scalia R: Leukocyte-endothelial cell interactions in nitric oxide synthase-deficient mice. Am J Physiol 276: H1943–H1950, 1999PubMedGoogle Scholar
  44. 44.
    Kawachi S, Cockrell A, Laroux FS, Gray L, Granger DN, van der Heyde HC, Grisham MB: Role of inducible nitric oxide synthase in the regulation of VCAM-1 expression in gut inflammation. Am J Physiol 277: G572–G576, 1999PubMedGoogle Scholar
  45. 45.
    Schutze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, Kronke M: TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced 'acidic' sphingomyelin breakdown. Cell 71: 765–776, 1992PubMedGoogle Scholar
  46. 46.
    Jordan JE, Zhao ZQ, Vinten-Johansen J: The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovasc Res 43: 860–878, 1999PubMedGoogle Scholar
  47. 47.
    Cairns CB, Panacek EA, Harken AH, Banerjee A: Bench to bedside: Tumor necrosis factor alpha: From inflammation to resuscitation. Acad Emerg Med 7: 930–941, 2000PubMedGoogle Scholar
  48. 48.
    Lentsch AB, Kato A, Yoshidome H, McMasters KM, Edwards MJ: Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury. Hepatology 32: 169–173, 2000PubMedGoogle Scholar
  49. 49.
    Peng HB, Libby P, Liao J K: Induction and stabilization of I kappa B alpha by nitric oxide mediates inhibition of NF-kappa B. J Biol Chem 270: 14214–14219, 1995PubMedGoogle Scholar
  50. 50.
    Nardo B, Caraceni P, Pasini P, Domenicali M, Catena F, Cavallari G, Santoni B, Maiolini E, Grattagliano I, Vendemiale G, Trevisani F, Roda A, Bernardi M, Cavallari A: Increased generation of reactive oxygen species in isolated fatty liver during post-ischemic reoxygenation. Transplantation 71: 1816–1820, 2001PubMedGoogle Scholar
  51. 51.
    Marshall HE, Stamler JS: Inhibition of NF-kappa B by S-nitrosylation. Biochemistry 40: 1688–1693, 2001PubMedGoogle Scholar
  52. 52.
    Yabe Y, Kobayashi N, Nishihashi T, Takahashi R, Nishikawa M, Takakura Y, Hashida M: Prevention of neutrophil-mediated hepatic ischemia/reperfusion injury by superoxide dismutase and catalase derivatives. J Pharmacol Exp Ther 298: 894–899, 2001PubMedGoogle Scholar
  53. 53.
    Wang P, Zweier JL: Measurement of nitric oxide and peroxynitrite generation in the post-ischemic heart: Evidence for peroxynitrite-mediated reperfusion injury. J Biol Chem 271: 29223–29230, 1996PubMedGoogle Scholar
  54. 54.
    Miles AM, Bohle DS, Glassbrenner PA, Hansert B, Wink DA, Grisham MB: Modulation of superoxide-dependent oxidation and hydroxylation reactions by nitric oxide. J Biol Chem 271: 40–47, 1996PubMedGoogle Scholar
  55. 55.
    Grisham MB, Granger DN, Lefer DJ: Modulation of leukocyte-endothelial interactions by reactive metabolites of oxygen and nitrogen: Relevance to ischemic heart disease. Free Radic Biol Med 25: 404–433, 1998PubMedGoogle Scholar
  56. 56.
    Meyer M, Schreck R, Baeuerle PA: H2O2 and antioxidants have opposite effects on activation of NF-kappa B and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J 12: 2005–2015, 1993PubMedGoogle Scholar
  57. 57.
    Kokura S, Wolf RE, Yoshikawa T, Granger DN, Aw TY: Molecular mechanisms of neutrophil-endothelial cell adhesion induced by redox imbalance. Cric Res 84: 516–524, 1999Google Scholar
  58. 58.
    Hoffmann A, Gloe T, Pohl U: Hypoxia-induced upregulation of eNOS gene expression is redox-sensitive: A comparison between hypoxia and inhibitors of cell metabolism. J Cell Physiol 188: 33–44, 2001PubMedGoogle Scholar
  59. 59.
    Son H, Hawkins RD, Martin K, Kiebler M, Huang PL, Fishman MC, Kandel ER: Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell 87: 1015–1023, 1996PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ian N. Hines
    • 1
  • Shigeyuki Kawachi
    • 1
  • Hirohisa Harada
    • 1
  • Kevin P. Pavlick
    • 1
  • Jason M. Hoffman
    • 1
  • Sulaiman Bharwani
    • 2
  • Robert E. Wolf
    • 2
  • Matthew B. Grisham
    • 1
  1. 1.Department of Molecular and Cellular PhysiologyLSU Health Sciences CenterShreveportUSA
  2. 2.Department of PediatricsLSU Health Sciences CenterShreveportUSA

Personalised recommendations